TY - JOUR
T1 - Functionally Aberrant Mutant KCNQ1 With Intermediate Heterozygous and Homozygous Phenotypes
AU - Liu, Zhenning
AU - Zheng, Renjian
AU - Grushko, Michael J.
AU - Uversky, Vladimir N.
AU - McDonald, Thomas V.
N1 - Funding Information:
This work was supported by the National Institutes of Health (HL120782 to T.V.M.).
Publisher Copyright:
© 2018 Canadian Cardiovascular Society
PY - 2018/9
Y1 - 2018/9
N2 - Background: Deleterious mutations in KCNQ1 may lead to an autosomal dominant form of long QT syndrome (LQTS) (Romano-Ward) or autosomal recessive form (Jervell and Lange-Nielsen). Both are associated with severe ventricular tachyarrhythmias due to the reduction of the slowly activating delayed rectifier K+ current (IKs). Our objective was to investigate the functional consequences of KCNQ1-R562S mutation in an atypical form of KCNQ1-linked LQTS. Methods: Mutant KCNQ1-R562S was analyzed via confocal imaging, surface biotinylation assays, co-immunoprecipitation, phosphatidylinositol-4,5-bisphosphate pulldown test, whole-cell patch clamp, and computational intrinsic disorder analyses. Results: Protein expression, assembly with KCNE1, and trafficking to the surface membrane of KCNQ1-R562S were comparable with wild-type channels. The most significant functional effect of the R562S mutation was a depolarizing shift in the voltage dependence of activation that was dependent on association with KCNE1. The biophysical abnormality was only partially dominant over coexpressed wild-type channels. R562S mutation impaired C-terminal association with membrane phosphatidylinositol-4,5-bisphosphate. These changes led to compromised rate-related accumulation of repolarizing current that is an important property of normal IKs. Conclusions: KCNQ1-R562S mutation reduces effective IKs due to channel gating alteration with a mild clinical expression in the heterozygous state due to minimal dominant phenotype. In the homozygous state, it is exhibited with a moderately severe LQTS phenotype due to the incomplete absence of IKs.
AB - Background: Deleterious mutations in KCNQ1 may lead to an autosomal dominant form of long QT syndrome (LQTS) (Romano-Ward) or autosomal recessive form (Jervell and Lange-Nielsen). Both are associated with severe ventricular tachyarrhythmias due to the reduction of the slowly activating delayed rectifier K+ current (IKs). Our objective was to investigate the functional consequences of KCNQ1-R562S mutation in an atypical form of KCNQ1-linked LQTS. Methods: Mutant KCNQ1-R562S was analyzed via confocal imaging, surface biotinylation assays, co-immunoprecipitation, phosphatidylinositol-4,5-bisphosphate pulldown test, whole-cell patch clamp, and computational intrinsic disorder analyses. Results: Protein expression, assembly with KCNE1, and trafficking to the surface membrane of KCNQ1-R562S were comparable with wild-type channels. The most significant functional effect of the R562S mutation was a depolarizing shift in the voltage dependence of activation that was dependent on association with KCNE1. The biophysical abnormality was only partially dominant over coexpressed wild-type channels. R562S mutation impaired C-terminal association with membrane phosphatidylinositol-4,5-bisphosphate. These changes led to compromised rate-related accumulation of repolarizing current that is an important property of normal IKs. Conclusions: KCNQ1-R562S mutation reduces effective IKs due to channel gating alteration with a mild clinical expression in the heterozygous state due to minimal dominant phenotype. In the homozygous state, it is exhibited with a moderately severe LQTS phenotype due to the incomplete absence of IKs.
UR - http://www.scopus.com/inward/record.url?scp=85051058384&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85051058384&partnerID=8YFLogxK
U2 - 10.1016/j.cjca.2018.06.015
DO - 10.1016/j.cjca.2018.06.015
M3 - Article
C2 - 30170673
AN - SCOPUS:85051058384
VL - 34
SP - 1174
EP - 1184
JO - Canadian Journal of Cardiology
JF - Canadian Journal of Cardiology
SN - 0828-282X
IS - 9
ER -