Functional cooperation of two independent targeting domains in syntaxin 6 is required for its efficient localization in the trans-Golgi network of 3T3L1 adipocytes

Robert T. Watson, Jeffrey E. Pessin

Research output: Contribution to journalArticle

58 Citations (Scopus)

Abstract

To identify the targeting domains of syntaxin 6 responsible for its localization to the trans-Golgi network (TGN), we examined the subcellular distribution of enhanced green fluorescent protein (EGFP) epitope-tagged syntaxin 6/syntaxin 4 chimerae and syntaxin 6 truncation/deletion mutants in 3T3L1 adipocytes. Expression of EGFP-syntaxin 6 resulted in a perinuclear distribution identical to endogenous syntaxin 6 as determined both by confocal fluorescence microscopy and subcellular fractionation. Furthermore, both the endogenous and the expressed EGFP-syntaxin 6 fusion protein were localized to a brefeldin A-insensitive but okadaic acid-sensitive compartment characteristic of the TGN. In contrast, EGFP-syntaxin 6 constructs lacking the H2 domain were excluded from the TGN and were instead primarily localized to the plasma membrane. Although syntaxin 4 was localized to the plasma membrane, syntaxin 6/syntaxin 4 chimerae and syntaxin 6 truncations containing the H2 domain of syntaxin 6 were predominantly directed to the TGN. Importantly, the syntaxin 6 H2 domain fused to the transmembrane domain of syntaxin 4 was also localized to the TGN, demonstrating that the H2 domain was sufficient to confer TGN localization. In addition to the H2 domain, a tyrosine-based plasma membrane internalization signal (YGRL) was identified between the H1 and H2 domains of syntaxin 6. Deletion of this sequence resulted in the accumulation of the EGFP-syntaxin 6 reporter construct at the plasma membrane. Together, these data demonstrate that syntaxin 6 utilizes two distinct domains to drive its specific subcellular localization to the TGN.

Original languageEnglish (US)
Pages (from-to)1261-1268
Number of pages8
JournalJournal of Biological Chemistry
Volume275
Issue number2
DOIs
StatePublished - Jan 14 2000
Externally publishedYes

Fingerprint

Qa-SNARE Proteins
trans-Golgi Network
Adipocytes
Cell membranes
Cell Membrane
Brefeldin A
Okadaic Acid

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{7cac0b3da4e34263af8be47102f4baf9,
title = "Functional cooperation of two independent targeting domains in syntaxin 6 is required for its efficient localization in the trans-Golgi network of 3T3L1 adipocytes",
abstract = "To identify the targeting domains of syntaxin 6 responsible for its localization to the trans-Golgi network (TGN), we examined the subcellular distribution of enhanced green fluorescent protein (EGFP) epitope-tagged syntaxin 6/syntaxin 4 chimerae and syntaxin 6 truncation/deletion mutants in 3T3L1 adipocytes. Expression of EGFP-syntaxin 6 resulted in a perinuclear distribution identical to endogenous syntaxin 6 as determined both by confocal fluorescence microscopy and subcellular fractionation. Furthermore, both the endogenous and the expressed EGFP-syntaxin 6 fusion protein were localized to a brefeldin A-insensitive but okadaic acid-sensitive compartment characteristic of the TGN. In contrast, EGFP-syntaxin 6 constructs lacking the H2 domain were excluded from the TGN and were instead primarily localized to the plasma membrane. Although syntaxin 4 was localized to the plasma membrane, syntaxin 6/syntaxin 4 chimerae and syntaxin 6 truncations containing the H2 domain of syntaxin 6 were predominantly directed to the TGN. Importantly, the syntaxin 6 H2 domain fused to the transmembrane domain of syntaxin 4 was also localized to the TGN, demonstrating that the H2 domain was sufficient to confer TGN localization. In addition to the H2 domain, a tyrosine-based plasma membrane internalization signal (YGRL) was identified between the H1 and H2 domains of syntaxin 6. Deletion of this sequence resulted in the accumulation of the EGFP-syntaxin 6 reporter construct at the plasma membrane. Together, these data demonstrate that syntaxin 6 utilizes two distinct domains to drive its specific subcellular localization to the TGN.",
author = "Watson, {Robert T.} and Pessin, {Jeffrey E.}",
year = "2000",
month = "1",
day = "14",
doi = "10.1074/jbc.275.2.1261",
language = "English (US)",
volume = "275",
pages = "1261--1268",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "2",

}

TY - JOUR

T1 - Functional cooperation of two independent targeting domains in syntaxin 6 is required for its efficient localization in the trans-Golgi network of 3T3L1 adipocytes

AU - Watson, Robert T.

AU - Pessin, Jeffrey E.

PY - 2000/1/14

Y1 - 2000/1/14

N2 - To identify the targeting domains of syntaxin 6 responsible for its localization to the trans-Golgi network (TGN), we examined the subcellular distribution of enhanced green fluorescent protein (EGFP) epitope-tagged syntaxin 6/syntaxin 4 chimerae and syntaxin 6 truncation/deletion mutants in 3T3L1 adipocytes. Expression of EGFP-syntaxin 6 resulted in a perinuclear distribution identical to endogenous syntaxin 6 as determined both by confocal fluorescence microscopy and subcellular fractionation. Furthermore, both the endogenous and the expressed EGFP-syntaxin 6 fusion protein were localized to a brefeldin A-insensitive but okadaic acid-sensitive compartment characteristic of the TGN. In contrast, EGFP-syntaxin 6 constructs lacking the H2 domain were excluded from the TGN and were instead primarily localized to the plasma membrane. Although syntaxin 4 was localized to the plasma membrane, syntaxin 6/syntaxin 4 chimerae and syntaxin 6 truncations containing the H2 domain of syntaxin 6 were predominantly directed to the TGN. Importantly, the syntaxin 6 H2 domain fused to the transmembrane domain of syntaxin 4 was also localized to the TGN, demonstrating that the H2 domain was sufficient to confer TGN localization. In addition to the H2 domain, a tyrosine-based plasma membrane internalization signal (YGRL) was identified between the H1 and H2 domains of syntaxin 6. Deletion of this sequence resulted in the accumulation of the EGFP-syntaxin 6 reporter construct at the plasma membrane. Together, these data demonstrate that syntaxin 6 utilizes two distinct domains to drive its specific subcellular localization to the TGN.

AB - To identify the targeting domains of syntaxin 6 responsible for its localization to the trans-Golgi network (TGN), we examined the subcellular distribution of enhanced green fluorescent protein (EGFP) epitope-tagged syntaxin 6/syntaxin 4 chimerae and syntaxin 6 truncation/deletion mutants in 3T3L1 adipocytes. Expression of EGFP-syntaxin 6 resulted in a perinuclear distribution identical to endogenous syntaxin 6 as determined both by confocal fluorescence microscopy and subcellular fractionation. Furthermore, both the endogenous and the expressed EGFP-syntaxin 6 fusion protein were localized to a brefeldin A-insensitive but okadaic acid-sensitive compartment characteristic of the TGN. In contrast, EGFP-syntaxin 6 constructs lacking the H2 domain were excluded from the TGN and were instead primarily localized to the plasma membrane. Although syntaxin 4 was localized to the plasma membrane, syntaxin 6/syntaxin 4 chimerae and syntaxin 6 truncations containing the H2 domain of syntaxin 6 were predominantly directed to the TGN. Importantly, the syntaxin 6 H2 domain fused to the transmembrane domain of syntaxin 4 was also localized to the TGN, demonstrating that the H2 domain was sufficient to confer TGN localization. In addition to the H2 domain, a tyrosine-based plasma membrane internalization signal (YGRL) was identified between the H1 and H2 domains of syntaxin 6. Deletion of this sequence resulted in the accumulation of the EGFP-syntaxin 6 reporter construct at the plasma membrane. Together, these data demonstrate that syntaxin 6 utilizes two distinct domains to drive its specific subcellular localization to the TGN.

UR - http://www.scopus.com/inward/record.url?scp=0033963378&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033963378&partnerID=8YFLogxK

U2 - 10.1074/jbc.275.2.1261

DO - 10.1074/jbc.275.2.1261

M3 - Article

C2 - 10625671

AN - SCOPUS:0033963378

VL - 275

SP - 1261

EP - 1268

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 2

ER -