Fructose amplifies counterregulatory responses to hypoglycemia in humans

Ilan Gabriely, Meredith A. Hawkins, Cristian Vilcu, Luciano Rossetti, Harry Shamoon

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Glucokinase (GK) is required for cellular glucose sensing, although there is a paucity of data regarding its role in the counterregulatory response to hypoglycemia in humans. Because fructose has been shown to modulate GK activity, we examined the effects of an acute infusion of fructose on hypoglycemia counterregulation in seven lean nondiabetic subjects. Using stepped hypoglycemia clamp studies (5.0, 4.4, 3.9, and 3.3 mmol/l target plasma glucose steps, 50 min each), subjects were studied on two separate occasions, without (control) or with co-infusion of fructose (1.2 mg · kg -1 · min -1). Fructose induced a resetting of the glycemic thresholds for secretion of epinephrine (3.8 ± 0.1 mmol/l) and glucagon (3.9 ± 0.2 mmol/l) to higher plasma glucose concentrations (4.0 ± 0.1 mmol/l [P = 0.006] and 4.1 ± 0.1 mmol/l [P = 0.03], respectively). In addition, the magnitude of increase in epinephrine and glucagon concentrations was higher after administration of fructose (48 and 39%, respectively, P < 0.05 for both). The amplification of these hormonal responses was specific because plasma norepinephrine, growth hormone, and cortisol were comparable in both sets of studies. Endogenous glucose production, measured with [3- 3H]glucose, increased by 47% (P < 0.05) in the fructose infusion studies compared with 14% (P = NS) in the control studies. In addition, glucose uptake was more suppressed with fructose infusion (by 33%, P < 0.05). In concert with these effects of fructose on glucose kinetics, average glucose infusion rate was markedly reduced in the fructose infusion studies during the 3.9-mmol/l glucose step (4.6 ± 0.9 vs. 7.4 ± 1.1 μmol · kg -1 · min -1, respectively, P = 0.03) and during the 3.3-mmol/l glucose step (0.5 ± 0.1 vs. 5.2 ± 1.2 μmol · kg -1 · min -1, respectively, P < 0.001), suggesting more potent glucose counterregulation and improved recovery from hypoglycemia with fructose infusion. We conclude that infusion of a catalytic dose of fructose amplifies the counterregulatory response to hypoglycemia by both increases in hormonal activation and augmentation of glucose counterregulation in humans.

Original languageEnglish (US)
Pages (from-to)893-900
Number of pages8
JournalDiabetes
Volume51
Issue number4
StatePublished - 2002

Fingerprint

Fructose
Hypoglycemia
Glucose
Glucokinase
Glucagon
Epinephrine
Growth Hormone
Hydrocortisone
Norepinephrine

ASJC Scopus subject areas

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism

Cite this

Fructose amplifies counterregulatory responses to hypoglycemia in humans. / Gabriely, Ilan; Hawkins, Meredith A.; Vilcu, Cristian; Rossetti, Luciano; Shamoon, Harry.

In: Diabetes, Vol. 51, No. 4, 2002, p. 893-900.

Research output: Contribution to journalArticle

Gabriely, I, Hawkins, MA, Vilcu, C, Rossetti, L & Shamoon, H 2002, 'Fructose amplifies counterregulatory responses to hypoglycemia in humans', Diabetes, vol. 51, no. 4, pp. 893-900.
Gabriely, Ilan ; Hawkins, Meredith A. ; Vilcu, Cristian ; Rossetti, Luciano ; Shamoon, Harry. / Fructose amplifies counterregulatory responses to hypoglycemia in humans. In: Diabetes. 2002 ; Vol. 51, No. 4. pp. 893-900.
@article{cc40b8fed7114121b1cc73feb9fe73e1,
title = "Fructose amplifies counterregulatory responses to hypoglycemia in humans",
abstract = "Glucokinase (GK) is required for cellular glucose sensing, although there is a paucity of data regarding its role in the counterregulatory response to hypoglycemia in humans. Because fructose has been shown to modulate GK activity, we examined the effects of an acute infusion of fructose on hypoglycemia counterregulation in seven lean nondiabetic subjects. Using stepped hypoglycemia clamp studies (5.0, 4.4, 3.9, and 3.3 mmol/l target plasma glucose steps, 50 min each), subjects were studied on two separate occasions, without (control) or with co-infusion of fructose (1.2 mg · kg -1 · min -1). Fructose induced a resetting of the glycemic thresholds for secretion of epinephrine (3.8 ± 0.1 mmol/l) and glucagon (3.9 ± 0.2 mmol/l) to higher plasma glucose concentrations (4.0 ± 0.1 mmol/l [P = 0.006] and 4.1 ± 0.1 mmol/l [P = 0.03], respectively). In addition, the magnitude of increase in epinephrine and glucagon concentrations was higher after administration of fructose (48 and 39{\%}, respectively, P < 0.05 for both). The amplification of these hormonal responses was specific because plasma norepinephrine, growth hormone, and cortisol were comparable in both sets of studies. Endogenous glucose production, measured with [3- 3H]glucose, increased by 47{\%} (P < 0.05) in the fructose infusion studies compared with 14{\%} (P = NS) in the control studies. In addition, glucose uptake was more suppressed with fructose infusion (by 33{\%}, P < 0.05). In concert with these effects of fructose on glucose kinetics, average glucose infusion rate was markedly reduced in the fructose infusion studies during the 3.9-mmol/l glucose step (4.6 ± 0.9 vs. 7.4 ± 1.1 μmol · kg -1 · min -1, respectively, P = 0.03) and during the 3.3-mmol/l glucose step (0.5 ± 0.1 vs. 5.2 ± 1.2 μmol · kg -1 · min -1, respectively, P < 0.001), suggesting more potent glucose counterregulation and improved recovery from hypoglycemia with fructose infusion. We conclude that infusion of a catalytic dose of fructose amplifies the counterregulatory response to hypoglycemia by both increases in hormonal activation and augmentation of glucose counterregulation in humans.",
author = "Ilan Gabriely and Hawkins, {Meredith A.} and Cristian Vilcu and Luciano Rossetti and Harry Shamoon",
year = "2002",
language = "English (US)",
volume = "51",
pages = "893--900",
journal = "Diabetes",
issn = "0012-1797",
publisher = "American Diabetes Association Inc.",
number = "4",

}

TY - JOUR

T1 - Fructose amplifies counterregulatory responses to hypoglycemia in humans

AU - Gabriely, Ilan

AU - Hawkins, Meredith A.

AU - Vilcu, Cristian

AU - Rossetti, Luciano

AU - Shamoon, Harry

PY - 2002

Y1 - 2002

N2 - Glucokinase (GK) is required for cellular glucose sensing, although there is a paucity of data regarding its role in the counterregulatory response to hypoglycemia in humans. Because fructose has been shown to modulate GK activity, we examined the effects of an acute infusion of fructose on hypoglycemia counterregulation in seven lean nondiabetic subjects. Using stepped hypoglycemia clamp studies (5.0, 4.4, 3.9, and 3.3 mmol/l target plasma glucose steps, 50 min each), subjects were studied on two separate occasions, without (control) or with co-infusion of fructose (1.2 mg · kg -1 · min -1). Fructose induced a resetting of the glycemic thresholds for secretion of epinephrine (3.8 ± 0.1 mmol/l) and glucagon (3.9 ± 0.2 mmol/l) to higher plasma glucose concentrations (4.0 ± 0.1 mmol/l [P = 0.006] and 4.1 ± 0.1 mmol/l [P = 0.03], respectively). In addition, the magnitude of increase in epinephrine and glucagon concentrations was higher after administration of fructose (48 and 39%, respectively, P < 0.05 for both). The amplification of these hormonal responses was specific because plasma norepinephrine, growth hormone, and cortisol were comparable in both sets of studies. Endogenous glucose production, measured with [3- 3H]glucose, increased by 47% (P < 0.05) in the fructose infusion studies compared with 14% (P = NS) in the control studies. In addition, glucose uptake was more suppressed with fructose infusion (by 33%, P < 0.05). In concert with these effects of fructose on glucose kinetics, average glucose infusion rate was markedly reduced in the fructose infusion studies during the 3.9-mmol/l glucose step (4.6 ± 0.9 vs. 7.4 ± 1.1 μmol · kg -1 · min -1, respectively, P = 0.03) and during the 3.3-mmol/l glucose step (0.5 ± 0.1 vs. 5.2 ± 1.2 μmol · kg -1 · min -1, respectively, P < 0.001), suggesting more potent glucose counterregulation and improved recovery from hypoglycemia with fructose infusion. We conclude that infusion of a catalytic dose of fructose amplifies the counterregulatory response to hypoglycemia by both increases in hormonal activation and augmentation of glucose counterregulation in humans.

AB - Glucokinase (GK) is required for cellular glucose sensing, although there is a paucity of data regarding its role in the counterregulatory response to hypoglycemia in humans. Because fructose has been shown to modulate GK activity, we examined the effects of an acute infusion of fructose on hypoglycemia counterregulation in seven lean nondiabetic subjects. Using stepped hypoglycemia clamp studies (5.0, 4.4, 3.9, and 3.3 mmol/l target plasma glucose steps, 50 min each), subjects were studied on two separate occasions, without (control) or with co-infusion of fructose (1.2 mg · kg -1 · min -1). Fructose induced a resetting of the glycemic thresholds for secretion of epinephrine (3.8 ± 0.1 mmol/l) and glucagon (3.9 ± 0.2 mmol/l) to higher plasma glucose concentrations (4.0 ± 0.1 mmol/l [P = 0.006] and 4.1 ± 0.1 mmol/l [P = 0.03], respectively). In addition, the magnitude of increase in epinephrine and glucagon concentrations was higher after administration of fructose (48 and 39%, respectively, P < 0.05 for both). The amplification of these hormonal responses was specific because plasma norepinephrine, growth hormone, and cortisol were comparable in both sets of studies. Endogenous glucose production, measured with [3- 3H]glucose, increased by 47% (P < 0.05) in the fructose infusion studies compared with 14% (P = NS) in the control studies. In addition, glucose uptake was more suppressed with fructose infusion (by 33%, P < 0.05). In concert with these effects of fructose on glucose kinetics, average glucose infusion rate was markedly reduced in the fructose infusion studies during the 3.9-mmol/l glucose step (4.6 ± 0.9 vs. 7.4 ± 1.1 μmol · kg -1 · min -1, respectively, P = 0.03) and during the 3.3-mmol/l glucose step (0.5 ± 0.1 vs. 5.2 ± 1.2 μmol · kg -1 · min -1, respectively, P < 0.001), suggesting more potent glucose counterregulation and improved recovery from hypoglycemia with fructose infusion. We conclude that infusion of a catalytic dose of fructose amplifies the counterregulatory response to hypoglycemia by both increases in hormonal activation and augmentation of glucose counterregulation in humans.

UR - http://www.scopus.com/inward/record.url?scp=0036228446&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036228446&partnerID=8YFLogxK

M3 - Article

C2 - 11916904

AN - SCOPUS:0036228446

VL - 51

SP - 893

EP - 900

JO - Diabetes

JF - Diabetes

SN - 0012-1797

IS - 4

ER -