Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers

Laura Breda, Irene Motta, Silvia Lourenco, Chiara Gemmo, Wulan Deng, Jeremy W. Rupon, Osheiza Y. Abdulmalik, Deepa Manwani, Gerd A. Blobel, Stefano Rivella

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

Overcoming the silencing of the fetal γ-globin gene has been a long-standing goal in the treatment of sickle cell disease (SCD). The major transcriptional enhancer of the β-globin locus, called the locus control region (LCR), dynamically interacts with the developmental stage-appropriate β-type globin genes via chromatin looping, a process requiring the protein Ldb1. In adult erythroid cells, the LCR can be redirected from the adult β- to the fetal γ-globin promoter by tethering Ldb1 to the human γ-globin promoter with custom designed zinc finger (ZF) proteins (ZF-Ldb1), leading to reactivation of γ-globin gene expression. To compare this approach to pharmacologic reactivation of fetal hemoglobin (HbF), hematopoietic cells from patients with SCD were treated with a lentivirus expressing the ZF-Ldb1 or with chemical HbF inducers. The HbF increase in cells treated with ZF-Ldb1 was more than double that observed with decitabine and pomalidomide; butyrate had an intermediate effect whereas tranylcypromine and hydroxyurea showed relatively low HbF reactivation. ZF-Ldb1 showed comparatively little toxicity, and reduced sickle hemoglobin (HbS) synthesis as well as sickling of SCD erythroid cells under hypoxic conditions. The efficacy and low cytotoxicity of lentiviral mediated ZF-Ldb1 gene transfer compared with the drug regimens support its therapeutic potential for the treatment of SCD.

Original languageEnglish (US)
Pages (from-to)1139-1143
Number of pages5
JournalBlood
Volume128
Issue number8
DOIs
StatePublished - Aug 25 2016

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers'. Together they form a unique fingerprint.

Cite this