External pore residue mediates slow inactivation in μ1 rat skeletal muscle sodium channels

Jeffrey R. Balser, H. Bradley Nuss, Nipavan Chiamvimonvat, Maria Teresa Pérez-Garcia, Eduardo Marban, Gordon F. Tomaselli

Research output: Contribution to journalArticlepeer-review

118 Scopus citations

Abstract

1. Upon depolarization, voltage-gated sodium channels assume non-conducting inactivated states which may be characterized as 'fast' or 'slow' depending on the length of the repolarization period needed for recovery. Skeletal muscle Na+ channel α-subunits expressed in Xenopus laevis oocytes display anomalous gating behaviour, with substantial slow inactivation after brief depolarizations. We exploited this kinetic behaviour to examine the structural basis for slow inactivation. 2. While fast inactivation in Na+ channels is mediated by cytoplasmic occlusion of the pore by III-IV linker residues, the structural features of slow inactivation are unknown. Since external pore-lining residues modulate C-type inactivation in potassium channels, we performed serial cysteine mutagenesis in the permeation loop (P-loop) of the rat skeletal muscle Na+ channel (μ1) to determine whether similarly placed residues are involved in Na+ channel slow inactivation. 3. Wild-type and mutant α-subunits were heterologously expressed in Xenopus oocytes, and Na+ currents were recorded using a two-electrode voltage clamp. Slow inactivation after brief depolarizations was eliminated by the W402C mutation in domain I. Cysteine substitution of the homologous tryptophan residues in domains II, III and IV did not alter slow inactivation. 4. Analogous to the W402C mutation, coexpression of the wild-type α-subunit with rat brain Na+ channel β1-subunit attenuated slow inactivation. However, the W402C mutation imposed a delay on recovery from fast inactivation, while β1-subunit coexpression did not. We propose that the W402C mutation and the β1-subunit modulate gating through distinct mechanisms. 5. Removal of fast inactivation in wild-type α-subunits with the III-IV linker mutation I1303Q; F1304Q; M1305Q markedly slowed the development of slow inactivation. We propose that slow inactivation in Na+ channels involves conformational changes in the external pore. Mutations that affect fast and slow inactivation appear to interact despite their remote positions in the channel.

Original languageEnglish (US)
Pages (from-to)431-442
Number of pages12
JournalJournal of Physiology
Volume494
Issue number2
DOIs
StatePublished - Jul 15 1996
Externally publishedYes

ASJC Scopus subject areas

  • Physiology

Fingerprint

Dive into the research topics of 'External pore residue mediates slow inactivation in μ1 rat skeletal muscle sodium channels'. Together they form a unique fingerprint.

Cite this