Exploiting homologous recombination repair alterations in metastatic castrate-resistant prostate cancer: A case report and literature review

Stephen Zachary Peeke, Robert Lopez, Benjamin Gartrell

Research output: Contribution to journalReview articlepeer-review

Abstract

DNA damage can occur through a variety of processes and thus DNA repair is essential for cells to maintain their genomic integrity. Homologous recombination repair (HRR) is an important cellular mechanism by which double strand DNA breaks (DSB) are corrected with high fidelity. Proteins involved in this process include BRCA1, BRCA2, RAD51, and PALB2. Alterations in this mechanism can be found in a diverse set of malignancies and evidence exists that targeting these deficiencies can result in clinical benefit. Here we present a case of a patient with relapsed, metastatic castrate-resistant prostate cancer (mCRPC) that was refractory to standard of care therapies inducing androgen blockade and taxanes. He subsequently was found to have a PALB2 mutation on molecular analysis (next generation sequencing) of his tumor which was later confirmed to be germline. Treatment with carboplatin followed by a PARP-inhibitor led to rapid control of his advanced disease. This article will review the patient's course along with the mechanisms of DNA damage repair with a focus on HRR and the rationale for therapies targeted to exploit alterations of this process.

Original languageEnglish (US)
Article number10
JournalPrecision Cancer Medicine
Volume3
Issue numberMarch
DOIs
StatePublished - Mar 2020

Keywords

  • Case report
  • Homologous recombination repair (HRR)
  • Metastatic castrate-resistant prostate cancer (mCRPC)
  • PALB2
  • PARP-inhibition

ASJC Scopus subject areas

  • Oncology
  • Cancer Research
  • Oncology(nursing)
  • Pharmacology (medical)
  • Surgery
  • Anesthesiology and Pain Medicine

Fingerprint

Dive into the research topics of 'Exploiting homologous recombination repair alterations in metastatic castrate-resistant prostate cancer: A case report and literature review'. Together they form a unique fingerprint.

Cite this