Excitatory VTA to DH projections provide a valence signal to memory circuits

Yuan Han, Yi Zhang, Haram Kim, Viktoriya S. Grayson, Vladimir Jovasevic, Wenjie Ren, Maria V. Centeno, Anita L. Guedea, Mariah A.A. Meyer, Yixin Wu, Philipp Gutruf, Dalton J. Surmeier, Can Gao, Marco Martina, Apkar V. Apkarian, John A. Rogers, Jelena Radulovic

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

The positive or negative value (valence) of past experiences is normally integrated into neuronal circuits that encode episodic memories and plays an important role in guiding behavior. Here, we show, using mouse behavioral models, that glutamatergic afferents from the ventral tegmental area to the dorsal hippocampus (VTA→DH) signal negative valence to memory circuits, leading to the formation of fear-inducing context memories and to context-specific reinstatement of fear. To a lesser extent, these projections also contributed to opioid-induced place preference, suggesting a role in signaling positive valence as well, and thus a lack of dedicated polarity. Manipulations of VTA terminal activity were more effective in females and paralleled by sex differences in glutamatergic signaling. By prioritizing retrieval of negative and positive over neutral memories, the VTA→DH circuit can facilitate the selection of adaptive behaviors when current and past experiences are valence congruent.

Original languageEnglish (US)
Article number1466
JournalNature communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Excitatory VTA to DH projections provide a valence signal to memory circuits'. Together they form a unique fingerprint.

Cite this