Evolutionary relationships and functional conservation among vertebrate Max-associated proteins: The zebra fish homolog of Mxi1

Nicole Schreiber-Agus, Lynda Chin, Ken Chen, Richard Torres, Cole T. Thomson, James C. Sacchettini, Ronald A. DePinho

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

In mammals, current evidence supports the view that Myc-responsive activities are regulated in part through an intracellular balance between levels of transcriptionally-active Myc/Max heterodimers and those of transcriptionally-inert Max/Max, Mad/Max and Mxi1/Max complexes. To gain insight into the roles of Mad and Mxi1 in cellular growth and differentiation and to fortify key structure-function relationships from an evolutionary standpoint, low stringency hybridization screens were used to identify potential homologs of these Max-associated proteins in the zebra fish genome. A single class cf cDNA clones that cross-hybridized both to human mad and mxi1 probes was shown to encode a putative protein with significantly greater homology to mammalian Mxi1 than to Mad, particularly in the basic and helix-loop-helix (bHLH) regions. The high degree of structural relatedness between vertebrate Mxi1 proteins apparent in molecular modelling studies was consistent with the findings that the HLH/leucine zipper (LZ) region of zMxi1 exhibited the same profile of dimerization specificities as its mammalian counterpart in the two-hybrid system and that zmxi1 could, like human mxi1, suppress the oncogenic potential of mouse c-myc in a mammalian cell. Finally, a comparison of steady-state zc-myc and zmxi1 mRNA levels during zebra fish embryogenesis demonstrated (i) high levels of zc-myc relative to zmxi1 mRNA during initiation of organogenesis, a period characterized by intense growth and active differentiation and (ii) rising levels of zmxi1 mRNA during progression towards the terminally differentiated state. These contrasting patterns of developmental expression together with the capacity of zmxi1 to repress myc-induced transformation support a model for the regulation, by Max-associated proteins, of Myc functions in the control of normal cell development and neoplastic growth.

Original languageEnglish (US)
Pages (from-to)3167-3177
Number of pages11
JournalOncogene
Volume9
Issue number11
StatePublished - Nov 1994

Fingerprint

Zebrafish
Vertebrates
Messenger RNA
Leucine Zippers
Organogenesis
Dimerization
Growth
Growth and Development
Embryonic Development
Mammals
Proteins
Complementary DNA
Clone Cells
Genome
Myc associated factor X

ASJC Scopus subject areas

  • Cancer Research
  • Genetics
  • Molecular Biology

Cite this

Schreiber-Agus, N., Chin, L., Chen, K., Torres, R., Thomson, C. T., Sacchettini, J. C., & DePinho, R. A. (1994). Evolutionary relationships and functional conservation among vertebrate Max-associated proteins: The zebra fish homolog of Mxi1. Oncogene, 9(11), 3167-3177.

Evolutionary relationships and functional conservation among vertebrate Max-associated proteins : The zebra fish homolog of Mxi1. / Schreiber-Agus, Nicole; Chin, Lynda; Chen, Ken; Torres, Richard; Thomson, Cole T.; Sacchettini, James C.; DePinho, Ronald A.

In: Oncogene, Vol. 9, No. 11, 11.1994, p. 3167-3177.

Research output: Contribution to journalArticle

Schreiber-Agus, N, Chin, L, Chen, K, Torres, R, Thomson, CT, Sacchettini, JC & DePinho, RA 1994, 'Evolutionary relationships and functional conservation among vertebrate Max-associated proteins: The zebra fish homolog of Mxi1', Oncogene, vol. 9, no. 11, pp. 3167-3177.
Schreiber-Agus N, Chin L, Chen K, Torres R, Thomson CT, Sacchettini JC et al. Evolutionary relationships and functional conservation among vertebrate Max-associated proteins: The zebra fish homolog of Mxi1. Oncogene. 1994 Nov;9(11):3167-3177.
Schreiber-Agus, Nicole ; Chin, Lynda ; Chen, Ken ; Torres, Richard ; Thomson, Cole T. ; Sacchettini, James C. ; DePinho, Ronald A. / Evolutionary relationships and functional conservation among vertebrate Max-associated proteins : The zebra fish homolog of Mxi1. In: Oncogene. 1994 ; Vol. 9, No. 11. pp. 3167-3177.
@article{ffd3a480adb24a61a6a1eda9f0eba598,
title = "Evolutionary relationships and functional conservation among vertebrate Max-associated proteins: The zebra fish homolog of Mxi1",
abstract = "In mammals, current evidence supports the view that Myc-responsive activities are regulated in part through an intracellular balance between levels of transcriptionally-active Myc/Max heterodimers and those of transcriptionally-inert Max/Max, Mad/Max and Mxi1/Max complexes. To gain insight into the roles of Mad and Mxi1 in cellular growth and differentiation and to fortify key structure-function relationships from an evolutionary standpoint, low stringency hybridization screens were used to identify potential homologs of these Max-associated proteins in the zebra fish genome. A single class cf cDNA clones that cross-hybridized both to human mad and mxi1 probes was shown to encode a putative protein with significantly greater homology to mammalian Mxi1 than to Mad, particularly in the basic and helix-loop-helix (bHLH) regions. The high degree of structural relatedness between vertebrate Mxi1 proteins apparent in molecular modelling studies was consistent with the findings that the HLH/leucine zipper (LZ) region of zMxi1 exhibited the same profile of dimerization specificities as its mammalian counterpart in the two-hybrid system and that zmxi1 could, like human mxi1, suppress the oncogenic potential of mouse c-myc in a mammalian cell. Finally, a comparison of steady-state zc-myc and zmxi1 mRNA levels during zebra fish embryogenesis demonstrated (i) high levels of zc-myc relative to zmxi1 mRNA during initiation of organogenesis, a period characterized by intense growth and active differentiation and (ii) rising levels of zmxi1 mRNA during progression towards the terminally differentiated state. These contrasting patterns of developmental expression together with the capacity of zmxi1 to repress myc-induced transformation support a model for the regulation, by Max-associated proteins, of Myc functions in the control of normal cell development and neoplastic growth.",
author = "Nicole Schreiber-Agus and Lynda Chin and Ken Chen and Richard Torres and Thomson, {Cole T.} and Sacchettini, {James C.} and DePinho, {Ronald A.}",
year = "1994",
month = "11",
language = "English (US)",
volume = "9",
pages = "3167--3177",
journal = "Oncogene",
issn = "0950-9232",
publisher = "Nature Publishing Group",
number = "11",

}

TY - JOUR

T1 - Evolutionary relationships and functional conservation among vertebrate Max-associated proteins

T2 - The zebra fish homolog of Mxi1

AU - Schreiber-Agus, Nicole

AU - Chin, Lynda

AU - Chen, Ken

AU - Torres, Richard

AU - Thomson, Cole T.

AU - Sacchettini, James C.

AU - DePinho, Ronald A.

PY - 1994/11

Y1 - 1994/11

N2 - In mammals, current evidence supports the view that Myc-responsive activities are regulated in part through an intracellular balance between levels of transcriptionally-active Myc/Max heterodimers and those of transcriptionally-inert Max/Max, Mad/Max and Mxi1/Max complexes. To gain insight into the roles of Mad and Mxi1 in cellular growth and differentiation and to fortify key structure-function relationships from an evolutionary standpoint, low stringency hybridization screens were used to identify potential homologs of these Max-associated proteins in the zebra fish genome. A single class cf cDNA clones that cross-hybridized both to human mad and mxi1 probes was shown to encode a putative protein with significantly greater homology to mammalian Mxi1 than to Mad, particularly in the basic and helix-loop-helix (bHLH) regions. The high degree of structural relatedness between vertebrate Mxi1 proteins apparent in molecular modelling studies was consistent with the findings that the HLH/leucine zipper (LZ) region of zMxi1 exhibited the same profile of dimerization specificities as its mammalian counterpart in the two-hybrid system and that zmxi1 could, like human mxi1, suppress the oncogenic potential of mouse c-myc in a mammalian cell. Finally, a comparison of steady-state zc-myc and zmxi1 mRNA levels during zebra fish embryogenesis demonstrated (i) high levels of zc-myc relative to zmxi1 mRNA during initiation of organogenesis, a period characterized by intense growth and active differentiation and (ii) rising levels of zmxi1 mRNA during progression towards the terminally differentiated state. These contrasting patterns of developmental expression together with the capacity of zmxi1 to repress myc-induced transformation support a model for the regulation, by Max-associated proteins, of Myc functions in the control of normal cell development and neoplastic growth.

AB - In mammals, current evidence supports the view that Myc-responsive activities are regulated in part through an intracellular balance between levels of transcriptionally-active Myc/Max heterodimers and those of transcriptionally-inert Max/Max, Mad/Max and Mxi1/Max complexes. To gain insight into the roles of Mad and Mxi1 in cellular growth and differentiation and to fortify key structure-function relationships from an evolutionary standpoint, low stringency hybridization screens were used to identify potential homologs of these Max-associated proteins in the zebra fish genome. A single class cf cDNA clones that cross-hybridized both to human mad and mxi1 probes was shown to encode a putative protein with significantly greater homology to mammalian Mxi1 than to Mad, particularly in the basic and helix-loop-helix (bHLH) regions. The high degree of structural relatedness between vertebrate Mxi1 proteins apparent in molecular modelling studies was consistent with the findings that the HLH/leucine zipper (LZ) region of zMxi1 exhibited the same profile of dimerization specificities as its mammalian counterpart in the two-hybrid system and that zmxi1 could, like human mxi1, suppress the oncogenic potential of mouse c-myc in a mammalian cell. Finally, a comparison of steady-state zc-myc and zmxi1 mRNA levels during zebra fish embryogenesis demonstrated (i) high levels of zc-myc relative to zmxi1 mRNA during initiation of organogenesis, a period characterized by intense growth and active differentiation and (ii) rising levels of zmxi1 mRNA during progression towards the terminally differentiated state. These contrasting patterns of developmental expression together with the capacity of zmxi1 to repress myc-induced transformation support a model for the regulation, by Max-associated proteins, of Myc functions in the control of normal cell development and neoplastic growth.

UR - http://www.scopus.com/inward/record.url?scp=0027970842&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027970842&partnerID=8YFLogxK

M3 - Article

C2 - 7936639

AN - SCOPUS:0027970842

VL - 9

SP - 3167

EP - 3177

JO - Oncogene

JF - Oncogene

SN - 0950-9232

IS - 11

ER -