Estradiol inhibits mesangial cell-mediated oxidation of low-density lipoprotein.

Joel Neugarten, C. Ghossein, S. Silbiger

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

It has been suggested that hyperlipidemia may contribute to the progression of renal disease via the deleterious effects of oxidized low-density lipoprotein (LDL) on the glomerular mesangium. Because estrogens possess potent antioxidant activity, we sought to determine whether sex hormones influence the oxidation of LDL by mesangial cells. Rat mesangial cells were incubated with LDL (200 micrograms/ml), and the extent of lipid oxidation was assessed by the generation of thiobarbituric acid reactive substances (TBARS), by increased electrophoretic mobility, and by enhanced uptake of mesangial cell-modified LDL by macrophages. A progressive rise in TBARS and an increase in electrophoretic mobility was observed on incubation of LDL with mesangial cells. Coincubation with estradiol (10 mumol/L) reduced TBARS generation by 46% at 36 hours (p < 0.01) and reversed the increase in relative electrophoretic mobility (1.25 +/- 0.07 vs 1.01 +/- 0.03, p < 0.05). LDL that had been oxidized by mesangial cells in the presence of estradiol (10 mumol/L) showed reduced uptake by macrophages when compared with LDL that had been oxidized by mesangial cells in the absence of estradiol (14 +/- 2 pmol/10(6) cells per hour vs 22 +/- 3 pmol/10(6) cells per hour, p < 0.05). In contrast, neither testosterone nor estrone had any effect on these parameters. We conclude that estradiol, by virtue of its antioxidant properties, inhibits mesangial cell-mediated oxidation of LDL and reduces the uptake of mesangial cell-modified LDL by macrophages.

Original languageEnglish (US)
Pages (from-to)385-391
Number of pages7
JournalJournal of Laboratory and Clinical Medicine
Volume126
Issue number4
StatePublished - Oct 1995

Fingerprint

Mesangial Cells
LDL Lipoproteins
Estradiol
Oxidation
Electrophoretic mobility
Thiobarbituric Acid Reactive Substances
Macrophages
Glomerular Mesangium
Antioxidants
Estrone
Gonadal Steroid Hormones
Hyperlipidemias
Disease Progression
Testosterone
Rats
Estrogens
Kidney
Lipids

ASJC Scopus subject areas

  • Medicine(all)
  • Pathology and Forensic Medicine

Cite this

Estradiol inhibits mesangial cell-mediated oxidation of low-density lipoprotein. / Neugarten, Joel; Ghossein, C.; Silbiger, S.

In: Journal of Laboratory and Clinical Medicine, Vol. 126, No. 4, 10.1995, p. 385-391.

Research output: Contribution to journalArticle

@article{bd8e9b2f71064940949e076c1bc52055,
title = "Estradiol inhibits mesangial cell-mediated oxidation of low-density lipoprotein.",
abstract = "It has been suggested that hyperlipidemia may contribute to the progression of renal disease via the deleterious effects of oxidized low-density lipoprotein (LDL) on the glomerular mesangium. Because estrogens possess potent antioxidant activity, we sought to determine whether sex hormones influence the oxidation of LDL by mesangial cells. Rat mesangial cells were incubated with LDL (200 micrograms/ml), and the extent of lipid oxidation was assessed by the generation of thiobarbituric acid reactive substances (TBARS), by increased electrophoretic mobility, and by enhanced uptake of mesangial cell-modified LDL by macrophages. A progressive rise in TBARS and an increase in electrophoretic mobility was observed on incubation of LDL with mesangial cells. Coincubation with estradiol (10 mumol/L) reduced TBARS generation by 46{\%} at 36 hours (p < 0.01) and reversed the increase in relative electrophoretic mobility (1.25 +/- 0.07 vs 1.01 +/- 0.03, p < 0.05). LDL that had been oxidized by mesangial cells in the presence of estradiol (10 mumol/L) showed reduced uptake by macrophages when compared with LDL that had been oxidized by mesangial cells in the absence of estradiol (14 +/- 2 pmol/10(6) cells per hour vs 22 +/- 3 pmol/10(6) cells per hour, p < 0.05). In contrast, neither testosterone nor estrone had any effect on these parameters. We conclude that estradiol, by virtue of its antioxidant properties, inhibits mesangial cell-mediated oxidation of LDL and reduces the uptake of mesangial cell-modified LDL by macrophages.",
author = "Joel Neugarten and C. Ghossein and S. Silbiger",
year = "1995",
month = "10",
language = "English (US)",
volume = "126",
pages = "385--391",
journal = "Translational Research",
issn = "1931-5244",
publisher = "Mosby Inc.",
number = "4",

}

TY - JOUR

T1 - Estradiol inhibits mesangial cell-mediated oxidation of low-density lipoprotein.

AU - Neugarten, Joel

AU - Ghossein, C.

AU - Silbiger, S.

PY - 1995/10

Y1 - 1995/10

N2 - It has been suggested that hyperlipidemia may contribute to the progression of renal disease via the deleterious effects of oxidized low-density lipoprotein (LDL) on the glomerular mesangium. Because estrogens possess potent antioxidant activity, we sought to determine whether sex hormones influence the oxidation of LDL by mesangial cells. Rat mesangial cells were incubated with LDL (200 micrograms/ml), and the extent of lipid oxidation was assessed by the generation of thiobarbituric acid reactive substances (TBARS), by increased electrophoretic mobility, and by enhanced uptake of mesangial cell-modified LDL by macrophages. A progressive rise in TBARS and an increase in electrophoretic mobility was observed on incubation of LDL with mesangial cells. Coincubation with estradiol (10 mumol/L) reduced TBARS generation by 46% at 36 hours (p < 0.01) and reversed the increase in relative electrophoretic mobility (1.25 +/- 0.07 vs 1.01 +/- 0.03, p < 0.05). LDL that had been oxidized by mesangial cells in the presence of estradiol (10 mumol/L) showed reduced uptake by macrophages when compared with LDL that had been oxidized by mesangial cells in the absence of estradiol (14 +/- 2 pmol/10(6) cells per hour vs 22 +/- 3 pmol/10(6) cells per hour, p < 0.05). In contrast, neither testosterone nor estrone had any effect on these parameters. We conclude that estradiol, by virtue of its antioxidant properties, inhibits mesangial cell-mediated oxidation of LDL and reduces the uptake of mesangial cell-modified LDL by macrophages.

AB - It has been suggested that hyperlipidemia may contribute to the progression of renal disease via the deleterious effects of oxidized low-density lipoprotein (LDL) on the glomerular mesangium. Because estrogens possess potent antioxidant activity, we sought to determine whether sex hormones influence the oxidation of LDL by mesangial cells. Rat mesangial cells were incubated with LDL (200 micrograms/ml), and the extent of lipid oxidation was assessed by the generation of thiobarbituric acid reactive substances (TBARS), by increased electrophoretic mobility, and by enhanced uptake of mesangial cell-modified LDL by macrophages. A progressive rise in TBARS and an increase in electrophoretic mobility was observed on incubation of LDL with mesangial cells. Coincubation with estradiol (10 mumol/L) reduced TBARS generation by 46% at 36 hours (p < 0.01) and reversed the increase in relative electrophoretic mobility (1.25 +/- 0.07 vs 1.01 +/- 0.03, p < 0.05). LDL that had been oxidized by mesangial cells in the presence of estradiol (10 mumol/L) showed reduced uptake by macrophages when compared with LDL that had been oxidized by mesangial cells in the absence of estradiol (14 +/- 2 pmol/10(6) cells per hour vs 22 +/- 3 pmol/10(6) cells per hour, p < 0.05). In contrast, neither testosterone nor estrone had any effect on these parameters. We conclude that estradiol, by virtue of its antioxidant properties, inhibits mesangial cell-mediated oxidation of LDL and reduces the uptake of mesangial cell-modified LDL by macrophages.

UR - http://www.scopus.com/inward/record.url?scp=0029393688&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029393688&partnerID=8YFLogxK

M3 - Article

VL - 126

SP - 385

EP - 391

JO - Translational Research

JF - Translational Research

SN - 1931-5244

IS - 4

ER -