Enrichment and Proteomic Characterization of the Cyst Wall from In Vitro Toxoplasma gondii Cysts

Vincent Tu, Joshua Mayoral, Tatsuki Sugi, Tadakimi Tomita, Bing Han, Yan Fen Ma, Louis M. Weiss

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The tissue cyst of Toxoplasma gondii, found in latent infection, serves a critical role in both transmission and reactivation of this organism. Within infected cells, slowly replicating parasites (bradyzoites) are surrounded by a cyst matrix, cyst wall, and cyst membrane. The cyst wall is clearly delineated by ultrastructural analysis; however, the composition and function of this layer in host-parasite interactions are not fully understood. In order to understand the composition of the cyst wall, a proteomic analysis of purified cyst wall fragments, that were enriched with Percoll gradients and subsequently immunoprecipitated with CST1 antibody, was performed. Known cyst wall proteins, such as CST1, BPK1, MCP4, MAG1, GRA2, GRA3, and GRA5, were identified in this preparation by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, dense granule proteins (GRAs) not previously shown to associate with the cyst wall, as well as uncharacterized hypothetical proteins, were identified in this cyst wall preparation. Several of these hypothetical cyst wall (CST) proteins were epitope tagged, and immunofluorescence assays confirmed their localization as novel cyst matrix and cyst wall proteins. Expression of two of these newly identified cyst wall proteins was eliminated by gene knockout (CST2-KO and CST3-KO). CST2-KO parasites were highly attenuated in virulence and did not establish detectable cyst burdens. This targeted proteomic approach allowed the identification of new components of the cyst wall that probably have roles in the parasite/host interface.IMPORTANCEToxoplasma gondii is a highly prevalent parasite worldwide that presents life-threatening risks to immunocompromised and pregnant individuals. Whereas the life stage responsible for acute infection can be treated, the life stage responsible for chronic infection is refractory to currently available therapeutics. Little is known about the protein composition of the cyst wall, an amorphous structure formed by parasites that is suspected to facilitate persistence within muscle and nervous tissue during chronic (latent) infection. By implementing a refined approach to selectively purify cyst wall fragments, we identified several known and novel cyst wall proteins from our sample preparations. We confirmed the localizations of several proteins from this data set and identified one that is involved in parasite virulence. These data will propel further studies on cyst wall structure and function, leading to therapeutic strategies that can eliminate the chronic infection stage.

Original languageEnglish (US)
JournalmBio
Volume10
Issue number2
DOIs
StatePublished - Apr 30 2019

Fingerprint

Toxoplasma
Proteomics
Cysts
Parasites
Proteins
In Vitro Techniques
Infection
Virulence
Host-Parasite Interactions
Nerve Tissue
Gene Knockout Techniques

Keywords

  • bradyzoites
  • CST1
  • cyst wall
  • latency
  • proteomics
  • Toxoplasma gondii

ASJC Scopus subject areas

  • Microbiology
  • Virology

Cite this

Enrichment and Proteomic Characterization of the Cyst Wall from In Vitro Toxoplasma gondii Cysts. / Tu, Vincent; Mayoral, Joshua; Sugi, Tatsuki; Tomita, Tadakimi; Han, Bing; Ma, Yan Fen; Weiss, Louis M.

In: mBio, Vol. 10, No. 2, 30.04.2019.

Research output: Contribution to journalArticle

Tu, Vincent ; Mayoral, Joshua ; Sugi, Tatsuki ; Tomita, Tadakimi ; Han, Bing ; Ma, Yan Fen ; Weiss, Louis M. / Enrichment and Proteomic Characterization of the Cyst Wall from In Vitro Toxoplasma gondii Cysts. In: mBio. 2019 ; Vol. 10, No. 2.
@article{e3fd0e075ce646e993ec4060679efef4,
title = "Enrichment and Proteomic Characterization of the Cyst Wall from In Vitro Toxoplasma gondii Cysts",
abstract = "The tissue cyst of Toxoplasma gondii, found in latent infection, serves a critical role in both transmission and reactivation of this organism. Within infected cells, slowly replicating parasites (bradyzoites) are surrounded by a cyst matrix, cyst wall, and cyst membrane. The cyst wall is clearly delineated by ultrastructural analysis; however, the composition and function of this layer in host-parasite interactions are not fully understood. In order to understand the composition of the cyst wall, a proteomic analysis of purified cyst wall fragments, that were enriched with Percoll gradients and subsequently immunoprecipitated with CST1 antibody, was performed. Known cyst wall proteins, such as CST1, BPK1, MCP4, MAG1, GRA2, GRA3, and GRA5, were identified in this preparation by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, dense granule proteins (GRAs) not previously shown to associate with the cyst wall, as well as uncharacterized hypothetical proteins, were identified in this cyst wall preparation. Several of these hypothetical cyst wall (CST) proteins were epitope tagged, and immunofluorescence assays confirmed their localization as novel cyst matrix and cyst wall proteins. Expression of two of these newly identified cyst wall proteins was eliminated by gene knockout (CST2-KO and CST3-KO). CST2-KO parasites were highly attenuated in virulence and did not establish detectable cyst burdens. This targeted proteomic approach allowed the identification of new components of the cyst wall that probably have roles in the parasite/host interface.IMPORTANCEToxoplasma gondii is a highly prevalent parasite worldwide that presents life-threatening risks to immunocompromised and pregnant individuals. Whereas the life stage responsible for acute infection can be treated, the life stage responsible for chronic infection is refractory to currently available therapeutics. Little is known about the protein composition of the cyst wall, an amorphous structure formed by parasites that is suspected to facilitate persistence within muscle and nervous tissue during chronic (latent) infection. By implementing a refined approach to selectively purify cyst wall fragments, we identified several known and novel cyst wall proteins from our sample preparations. We confirmed the localizations of several proteins from this data set and identified one that is involved in parasite virulence. These data will propel further studies on cyst wall structure and function, leading to therapeutic strategies that can eliminate the chronic infection stage.",
keywords = "bradyzoites, CST1, cyst wall, latency, proteomics, Toxoplasma gondii",
author = "Vincent Tu and Joshua Mayoral and Tatsuki Sugi and Tadakimi Tomita and Bing Han and Ma, {Yan Fen} and Weiss, {Louis M.}",
year = "2019",
month = "4",
day = "30",
doi = "10.1128/mBio.00469-19",
language = "English (US)",
volume = "10",
journal = "mBio",
issn = "2161-2129",
publisher = "American Society for Microbiology",
number = "2",

}

TY - JOUR

T1 - Enrichment and Proteomic Characterization of the Cyst Wall from In Vitro Toxoplasma gondii Cysts

AU - Tu, Vincent

AU - Mayoral, Joshua

AU - Sugi, Tatsuki

AU - Tomita, Tadakimi

AU - Han, Bing

AU - Ma, Yan Fen

AU - Weiss, Louis M.

PY - 2019/4/30

Y1 - 2019/4/30

N2 - The tissue cyst of Toxoplasma gondii, found in latent infection, serves a critical role in both transmission and reactivation of this organism. Within infected cells, slowly replicating parasites (bradyzoites) are surrounded by a cyst matrix, cyst wall, and cyst membrane. The cyst wall is clearly delineated by ultrastructural analysis; however, the composition and function of this layer in host-parasite interactions are not fully understood. In order to understand the composition of the cyst wall, a proteomic analysis of purified cyst wall fragments, that were enriched with Percoll gradients and subsequently immunoprecipitated with CST1 antibody, was performed. Known cyst wall proteins, such as CST1, BPK1, MCP4, MAG1, GRA2, GRA3, and GRA5, were identified in this preparation by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, dense granule proteins (GRAs) not previously shown to associate with the cyst wall, as well as uncharacterized hypothetical proteins, were identified in this cyst wall preparation. Several of these hypothetical cyst wall (CST) proteins were epitope tagged, and immunofluorescence assays confirmed their localization as novel cyst matrix and cyst wall proteins. Expression of two of these newly identified cyst wall proteins was eliminated by gene knockout (CST2-KO and CST3-KO). CST2-KO parasites were highly attenuated in virulence and did not establish detectable cyst burdens. This targeted proteomic approach allowed the identification of new components of the cyst wall that probably have roles in the parasite/host interface.IMPORTANCEToxoplasma gondii is a highly prevalent parasite worldwide that presents life-threatening risks to immunocompromised and pregnant individuals. Whereas the life stage responsible for acute infection can be treated, the life stage responsible for chronic infection is refractory to currently available therapeutics. Little is known about the protein composition of the cyst wall, an amorphous structure formed by parasites that is suspected to facilitate persistence within muscle and nervous tissue during chronic (latent) infection. By implementing a refined approach to selectively purify cyst wall fragments, we identified several known and novel cyst wall proteins from our sample preparations. We confirmed the localizations of several proteins from this data set and identified one that is involved in parasite virulence. These data will propel further studies on cyst wall structure and function, leading to therapeutic strategies that can eliminate the chronic infection stage.

AB - The tissue cyst of Toxoplasma gondii, found in latent infection, serves a critical role in both transmission and reactivation of this organism. Within infected cells, slowly replicating parasites (bradyzoites) are surrounded by a cyst matrix, cyst wall, and cyst membrane. The cyst wall is clearly delineated by ultrastructural analysis; however, the composition and function of this layer in host-parasite interactions are not fully understood. In order to understand the composition of the cyst wall, a proteomic analysis of purified cyst wall fragments, that were enriched with Percoll gradients and subsequently immunoprecipitated with CST1 antibody, was performed. Known cyst wall proteins, such as CST1, BPK1, MCP4, MAG1, GRA2, GRA3, and GRA5, were identified in this preparation by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, dense granule proteins (GRAs) not previously shown to associate with the cyst wall, as well as uncharacterized hypothetical proteins, were identified in this cyst wall preparation. Several of these hypothetical cyst wall (CST) proteins were epitope tagged, and immunofluorescence assays confirmed their localization as novel cyst matrix and cyst wall proteins. Expression of two of these newly identified cyst wall proteins was eliminated by gene knockout (CST2-KO and CST3-KO). CST2-KO parasites were highly attenuated in virulence and did not establish detectable cyst burdens. This targeted proteomic approach allowed the identification of new components of the cyst wall that probably have roles in the parasite/host interface.IMPORTANCEToxoplasma gondii is a highly prevalent parasite worldwide that presents life-threatening risks to immunocompromised and pregnant individuals. Whereas the life stage responsible for acute infection can be treated, the life stage responsible for chronic infection is refractory to currently available therapeutics. Little is known about the protein composition of the cyst wall, an amorphous structure formed by parasites that is suspected to facilitate persistence within muscle and nervous tissue during chronic (latent) infection. By implementing a refined approach to selectively purify cyst wall fragments, we identified several known and novel cyst wall proteins from our sample preparations. We confirmed the localizations of several proteins from this data set and identified one that is involved in parasite virulence. These data will propel further studies on cyst wall structure and function, leading to therapeutic strategies that can eliminate the chronic infection stage.

KW - bradyzoites

KW - CST1

KW - cyst wall

KW - latency

KW - proteomics

KW - Toxoplasma gondii

UR - http://www.scopus.com/inward/record.url?scp=85065498647&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065498647&partnerID=8YFLogxK

U2 - 10.1128/mBio.00469-19

DO - 10.1128/mBio.00469-19

M3 - Article

C2 - 31040239

AN - SCOPUS:85065498647

VL - 10

JO - mBio

JF - mBio

SN - 2161-2129

IS - 2

ER -