TY - JOUR
T1 - Enolate-forming compounds provide protection from platinum neurotoxicity
AU - Geohagen, Brian C.
AU - Weiser, Daniel A.
AU - Loeb, David M.
AU - Nordstroem, Lars U.
AU - LoPachin, Richard M.
N1 - Funding Information:
The research discussed in this manuscript was supported by NIHs grant from the National Institutes of Environmental Health Sciences RO1 ES03830-31 ; RO1 ES07912-11 and by a charitable donation from the Band of Parents (RL).
Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Cisplatin (CisPt) and other platinum (Pt)-based antineoplastic drugs (e.g., carboplatin, oxaliplatin) are highly effective and widely used in the treatment of solid tumors in both pediatric and adult patients. Although considered to be life-saving as a cancer treatment, Pt-based drugs frequently result in dose-limiting toxicities such as chemotherapy-induced peripheral neuropathies (CIPN). Specifically, irreversible damage to outer hair cells and injury of sensory neurons are linked to profound sensorineural hearing loss (ototoxicity), which complicates tumor management and can lead to a poor clinical prognosis. Given the severity of CIPN, substantial effort has been devoted to the development of neuroprotective compounds, regardless clinical results have been underwhelming. It is noteworthy that Pt is a highly reactive electrophile (electron deficient) that causes toxicity by forming adducts with nucleophilic (electron rich) targets on macromolecules. In this regard, we have discovered a series of carbon-based enol nucleophiles; e.g., N-(4-acetyl-3,5-dihydroxyphenyl)-2-oxocytclopentane-1-carboxamide (Gavinol), that can prevent neurotoxicity by scavenging the platinum ion. The chemistry of enol compounds is well understood and mechanistic research has demonstrated the role of this chemistry in cytoprotection. Our cell-derived data were corroborated by calculations of hard and soft, acids and bases (HSAB) parameters that describe the electronic character of interacting electrophiles and nucleophiles. Together, these observations indicate that the respective mechanisms of Pt neurotoxicity and antitumor activity are separable and can therefore be affected independently.
AB - Cisplatin (CisPt) and other platinum (Pt)-based antineoplastic drugs (e.g., carboplatin, oxaliplatin) are highly effective and widely used in the treatment of solid tumors in both pediatric and adult patients. Although considered to be life-saving as a cancer treatment, Pt-based drugs frequently result in dose-limiting toxicities such as chemotherapy-induced peripheral neuropathies (CIPN). Specifically, irreversible damage to outer hair cells and injury of sensory neurons are linked to profound sensorineural hearing loss (ototoxicity), which complicates tumor management and can lead to a poor clinical prognosis. Given the severity of CIPN, substantial effort has been devoted to the development of neuroprotective compounds, regardless clinical results have been underwhelming. It is noteworthy that Pt is a highly reactive electrophile (electron deficient) that causes toxicity by forming adducts with nucleophilic (electron rich) targets on macromolecules. In this regard, we have discovered a series of carbon-based enol nucleophiles; e.g., N-(4-acetyl-3,5-dihydroxyphenyl)-2-oxocytclopentane-1-carboxamide (Gavinol), that can prevent neurotoxicity by scavenging the platinum ion. The chemistry of enol compounds is well understood and mechanistic research has demonstrated the role of this chemistry in cytoprotection. Our cell-derived data were corroborated by calculations of hard and soft, acids and bases (HSAB) parameters that describe the electronic character of interacting electrophiles and nucleophiles. Together, these observations indicate that the respective mechanisms of Pt neurotoxicity and antitumor activity are separable and can therefore be affected independently.
KW - Chemotherapy-induced peripheral neuropathies (CIPN)
KW - Enol neuroprotection
KW - HSAB parameters
KW - Platinum electrophile
UR - http://www.scopus.com/inward/record.url?scp=85078858104&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078858104&partnerID=8YFLogxK
U2 - 10.1016/j.cbi.2020.108961
DO - 10.1016/j.cbi.2020.108961
M3 - Article
C2 - 31978392
AN - SCOPUS:85078858104
SN - 0009-2797
VL - 317
JO - Chemico-Biological Interactions
JF - Chemico-Biological Interactions
M1 - 108961
ER -