ELQ-300 prodrugs for enhanced delivery and single-dose cure of malaria

Galen P. Miley, Sovitj Pou, Rolf Winter, Aaron Nilsen, Yuexin Li, Jane X. Kelly, Allison M. Stickles, Michael W. Mather, Isaac P. Forquer, April M. Pershing, Karen White, David Shackleford, Jessica Saunders, Gong Chen, Li Min Ting, Kami Kim, Lev N. Zakharov, Cristina Donini, Jeremy N. Burrows, Akhil B. VaidyaSusan A. Charman, Michael K. Riscoe

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

ELQ-300 is a preclinical candidate that targets the liver and blood stages of Plasmodium falciparum, as well as the forms that are crucial to transmission of disease: gametocytes, zygotes, and ookinetes. A significant obstacle to the clinical development of ELQ-300 is related to its physicochemical properties. Its relatively poor aqueous solubility and high crystallinity limit absorption to the degree that only low blood concentrations can be achieved following oral dosing. While these low blood concentrations are sufficient for therapy, the levels are too low to establish an acceptable safety margin required by regulatory agencies for clinical development. One way to address the challenging physicochemical properties of ELQ-300 is through the development of prodrugs. Here, we profile ELQ-337, a bioreversible O-linked carbonate ester prodrug of the parent molecule. At the molar equivalent dose of 3 mg/kg of body weight, the delivery of ELQ-300 from ELQ-337 is enhanced by 3- to 4-fold, reaching a maximum concentration of drug in serum (Cmax ) of 5.9 μM by 6 h after oral administration, and unlike ELQ-300 at any dose, ELQ-337 provides single-dose cures of patent malaria infections in mice at low-single-digit milligram per kilogram doses. Our findings show that the prodrug strategy represents a viable approach to overcome the physicochemical limitations of ELQ-300 to deliver the active drug to the bloodstream at concentrations sufficient for safety and toxicology studies, as well as achieving single-dose cures.

Original languageEnglish (US)
Pages (from-to)5555-5560
Number of pages6
JournalAntimicrobial agents and chemotherapy
Volume59
Issue number9
DOIs
StatePublished - Sep 1 2015

ASJC Scopus subject areas

  • Pharmacology
  • Pharmacology (medical)
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'ELQ-300 prodrugs for enhanced delivery and single-dose cure of malaria'. Together they form a unique fingerprint.

Cite this