Effects of Sub-chronic Lead Exposure on Essential Element Levels in Mice

Shaojun Li, Chun Yang, Xiang Yi, Ruokun Wei, Michael Aschner, Yueming Jiang, Shiyan Ou, Chaocong Yao

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Lead (Pb), a corrosion-resistant heavy non-ferrous metal, is one of the most common environmental neurotoxic metals. The effects of Pb on other essential metal elements are contradictory. Therefore, this in vivo study addressed the effects of sub-chronic Pb exposure on the distribution of other divalent metals, exploring the relationships between Pb levels in blood, teeth, bones, hair, and brain tissues. Thirty-two healthy male C57BL/6 mice received intragastric administration (i.g.) with 0, 12.5, 25, and 50 mg/kg Pb acetate, once a day for 8 weeks. Levels of Pb and other metal elements [including iron(Fe), zinc (Zn), magnesium (Mg), copper (Cu), and calcium(Ca)] in the whole blood, teeth, the right thighbone, hair, and brain tissues (including cortex, hippocampus, striatum, and hypothalamus) were detected with inductively coupled plasma–mass spectrometry (ICP-MS). Pb levels in all detected organs were increased after Pb-exposed for 8 weeks. The results of relationship analysis between Pb levels in the tissues and lifetime cumulative Pb exposure (LCPE) showed that Pb levels in the blood, bone, and hair could indirectly reflect the Pb accumulation in the murine brain. These measures might serve as valuable biomarkers for chronic Pb exposure reflective of the accumulation of Pb in the central nervous system (CNS). Sub-chronic Pb exposure for 8 weeks altered Ca, Cu, Fe, and Zn levels, but no effects were noted on Mg levels in any of the analyzed tissues. Pb decreased Ca in teeth, Cu in thighbone and teeth, Zn in whole blood and hair, and Fe in hair. In contrast, Pb increased Ca levels in corpus striatum and hypothalamus, Cu levels in striatum, Zn levels in teeth, and Fe levels in hippocampus, thighbone, and teeth. The Pb-induced changes in metal ratios in various tissues may serve as valuable biomarkers for chronic Pb exposure as they are closely related to the accumulations of Pb in the murine CNS. The results suggest that altered distribution of several essential metal elements may be involved in Pb-induced neurotoxicity. Additional studies should address the interaction between Pb and essential metal elements in the CNS and other organs.

Original languageEnglish (US)
Pages (from-to)282-293
Number of pages12
JournalBiological Trace Element Research
Volume201
Issue number1
DOIs
StatePublished - Jan 2023

Keywords

  • Essential elements
  • Lead
  • Mice
  • Neurotoxicity
  • Sub-chronic

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Clinical Biochemistry
  • Inorganic Chemistry
  • Biochemistry, medical

Fingerprint

Dive into the research topics of 'Effects of Sub-chronic Lead Exposure on Essential Element Levels in Mice'. Together they form a unique fingerprint.

Cite this