Effects of select PM-associated metals on alveolar macrophage phosphorylated ERK1 and -2 and iNOS expression during ongoing alteration in iron homeostasis

Colette Prophete, Polina Maciejczyk, Konstantin Salnikow, Timothy Gould, Timothy Larson, Jane Koenig, Peter Jaques, Constantinos Sioutas, Morton Lippmann, Mitchell Cohen

Research output: Contribution to journalArticle

22 Scopus citations


It was hypothesized that relative mass relationships among select constituent metals and iron (Fe 3+ ) govern the pulmonary immunotoxic potential of any PM 2.5 sample, as these determine the extent to which Fe 3+ binding by transferrin is affected (resulting in altered alveolar macrophage [AM] Fe status and subsequent antibacterial function). Iron response protein (IRP) binding activity is a useful indirect measurement of changes in Fe status, as reductions in cell Fe levels lead to increases in IRP binding. However, AM IRP activity can be affected by an increased presence of nitric oxide generated by inducible nitric oxide synthase (iNOS). This study sought to determine if any changes in AM IRP activity induced by PM 2.5 constituents V, Mn, or Al were independent from effects of the metals on cell NO formation. NR8383 rat AM were exposed to Fe 3+ alone or combined with V, Mn, or Al at metal:Fe ratios representative of those in PM 2.5 collected in New York City, Los Angeles, and Seattle during fall 2001. Cells were then assessed for changes in IRP activity and iNOS expression. Phosphorylated extracellular signal-regulated kinase (ERK) 1 and 2 levels were also measured since activated ERKs are involved in signaling pathways that lead to increased iNOS expression. The results indicate that V and Al, and to a lesser extent Mn, altered IRP activity, though the effects were not consistently concentration dependent. Furthermore, while V and Mn treatments did not induce iNOS expression, Al did. These results confirmed our hypothesis that certain metals associated with PM 2.5 might alter the pulmonary immunocompetence of exposed hosts by affecting the Fe status of AM, a major class of deep lung defense cells. Copyright

Original languageEnglish (US)
Pages (from-to)935-951
Number of pages17
JournalJournal of Toxicology and Environmental Health - Part A: Current Issues
Issue number10
Publication statusPublished - Jul 1 2006
Externally publishedYes


ASJC Scopus subject areas

  • Toxicology
  • Health, Toxicology and Mutagenesis

Cite this