Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man

Rita Jean Louard, E. J. Barrett, R. A. Gelfand

Research output: Contribution to journalArticle

111 Citations (Scopus)

Abstract

1. Using the forearm balance method, together with systemic infusions of L-[ring-2,6-3H]phenylalanine and L-[1-14C]leucine, we examined the effects of infused branched-chain amino acids on whole-body and skeletal muscle amino acid kinetics in 10 postabsorptive normal subjects; 10 control subjects received only saline. 2. Infusion of branched-chain amino acids caused a four-fold rise in arterial branched-chain amino acid levels and a two-fold rise in branched-chain keto acids; significant declines were observed in circulating levels of most other amino acids, including phenylalanine, which fell by 34%. Plasma insulin levels were unchanged from basal levels (8 ± 1 μ-units/ml). 3. Whole-body phenylalanine flux, an index of proteolysis, was significantly suppressed by branched-chain amino acid infusion (P < 0.002), and forearm phenylalanine production was also inhibited (P < 0.03). With branched-chain amino acid infusion total leucine flux rose, with marked increments in both oxidative and non-oxidative leucine disposal (P < 0.001). Proteolysis, as measured by endogenous leucine production, showed a modest 12% decrease, although this was not significant when compared with saline controls. The net forearm balance of leucine and other branched-chain amino acids changed from a basal net output to a marked net uptake (P < 0.001) during branched-chain amino acid infusion, with significant stimulation of local leucine disposal. Despite the rise in whole-body non-oxidative leucine disposal, and in forearm leucine uptake and disposal, forearm phenylalanine disposal, an index of muscle protein synthesis, was not stimulated by infusion of branched-chain amino acids. 4. The results suggest that in normal man branched-chain amino acid infusion suppresses skeletal muscle proteolysis independently of any rise of plasma insulin. Muscle branched-chain amino acid uptake rose dramatically in the absence of any apparent increase in muscle protein synthesis, as measured by phenylalanine disposal, or in branched-chain keto acid release. Thus, an increase in muscle branched-chain amino acid concentrations and/or local branched-chain amino acid oxidation must account for the increased disposal of branched-chain amino acids.

Original languageEnglish (US)
Pages (from-to)457-466
Number of pages10
JournalClinical Science
Volume79
Issue number5
StatePublished - 1990
Externally publishedYes

Fingerprint

Branched Chain Amino Acids
Amino Acids
Muscles
Leucine
Phenylalanine
Forearm
Proteolysis
Keto Acids
Muscle Proteins
Skeletal Muscle
Insulin

Keywords

  • amino acid kinetics
  • branched-chain amino acids
  • leucine
  • metabolism
  • protein
  • proteolysis
  • skeletal muscle

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man. / Louard, Rita Jean; Barrett, E. J.; Gelfand, R. A.

In: Clinical Science, Vol. 79, No. 5, 1990, p. 457-466.

Research output: Contribution to journalArticle

@article{9af150af112b4df395da2f70f5724ba5,
title = "Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man",
abstract = "1. Using the forearm balance method, together with systemic infusions of L-[ring-2,6-3H]phenylalanine and L-[1-14C]leucine, we examined the effects of infused branched-chain amino acids on whole-body and skeletal muscle amino acid kinetics in 10 postabsorptive normal subjects; 10 control subjects received only saline. 2. Infusion of branched-chain amino acids caused a four-fold rise in arterial branched-chain amino acid levels and a two-fold rise in branched-chain keto acids; significant declines were observed in circulating levels of most other amino acids, including phenylalanine, which fell by 34{\%}. Plasma insulin levels were unchanged from basal levels (8 ± 1 μ-units/ml). 3. Whole-body phenylalanine flux, an index of proteolysis, was significantly suppressed by branched-chain amino acid infusion (P < 0.002), and forearm phenylalanine production was also inhibited (P < 0.03). With branched-chain amino acid infusion total leucine flux rose, with marked increments in both oxidative and non-oxidative leucine disposal (P < 0.001). Proteolysis, as measured by endogenous leucine production, showed a modest 12{\%} decrease, although this was not significant when compared with saline controls. The net forearm balance of leucine and other branched-chain amino acids changed from a basal net output to a marked net uptake (P < 0.001) during branched-chain amino acid infusion, with significant stimulation of local leucine disposal. Despite the rise in whole-body non-oxidative leucine disposal, and in forearm leucine uptake and disposal, forearm phenylalanine disposal, an index of muscle protein synthesis, was not stimulated by infusion of branched-chain amino acids. 4. The results suggest that in normal man branched-chain amino acid infusion suppresses skeletal muscle proteolysis independently of any rise of plasma insulin. Muscle branched-chain amino acid uptake rose dramatically in the absence of any apparent increase in muscle protein synthesis, as measured by phenylalanine disposal, or in branched-chain keto acid release. Thus, an increase in muscle branched-chain amino acid concentrations and/or local branched-chain amino acid oxidation must account for the increased disposal of branched-chain amino acids.",
keywords = "amino acid kinetics, branched-chain amino acids, leucine, metabolism, protein, proteolysis, skeletal muscle",
author = "Louard, {Rita Jean} and Barrett, {E. J.} and Gelfand, {R. A.}",
year = "1990",
language = "English (US)",
volume = "79",
pages = "457--466",
journal = "Clinical Science",
issn = "0143-5221",
publisher = "Portland Press Ltd.",
number = "5",

}

TY - JOUR

T1 - Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man

AU - Louard, Rita Jean

AU - Barrett, E. J.

AU - Gelfand, R. A.

PY - 1990

Y1 - 1990

N2 - 1. Using the forearm balance method, together with systemic infusions of L-[ring-2,6-3H]phenylalanine and L-[1-14C]leucine, we examined the effects of infused branched-chain amino acids on whole-body and skeletal muscle amino acid kinetics in 10 postabsorptive normal subjects; 10 control subjects received only saline. 2. Infusion of branched-chain amino acids caused a four-fold rise in arterial branched-chain amino acid levels and a two-fold rise in branched-chain keto acids; significant declines were observed in circulating levels of most other amino acids, including phenylalanine, which fell by 34%. Plasma insulin levels were unchanged from basal levels (8 ± 1 μ-units/ml). 3. Whole-body phenylalanine flux, an index of proteolysis, was significantly suppressed by branched-chain amino acid infusion (P < 0.002), and forearm phenylalanine production was also inhibited (P < 0.03). With branched-chain amino acid infusion total leucine flux rose, with marked increments in both oxidative and non-oxidative leucine disposal (P < 0.001). Proteolysis, as measured by endogenous leucine production, showed a modest 12% decrease, although this was not significant when compared with saline controls. The net forearm balance of leucine and other branched-chain amino acids changed from a basal net output to a marked net uptake (P < 0.001) during branched-chain amino acid infusion, with significant stimulation of local leucine disposal. Despite the rise in whole-body non-oxidative leucine disposal, and in forearm leucine uptake and disposal, forearm phenylalanine disposal, an index of muscle protein synthesis, was not stimulated by infusion of branched-chain amino acids. 4. The results suggest that in normal man branched-chain amino acid infusion suppresses skeletal muscle proteolysis independently of any rise of plasma insulin. Muscle branched-chain amino acid uptake rose dramatically in the absence of any apparent increase in muscle protein synthesis, as measured by phenylalanine disposal, or in branched-chain keto acid release. Thus, an increase in muscle branched-chain amino acid concentrations and/or local branched-chain amino acid oxidation must account for the increased disposal of branched-chain amino acids.

AB - 1. Using the forearm balance method, together with systemic infusions of L-[ring-2,6-3H]phenylalanine and L-[1-14C]leucine, we examined the effects of infused branched-chain amino acids on whole-body and skeletal muscle amino acid kinetics in 10 postabsorptive normal subjects; 10 control subjects received only saline. 2. Infusion of branched-chain amino acids caused a four-fold rise in arterial branched-chain amino acid levels and a two-fold rise in branched-chain keto acids; significant declines were observed in circulating levels of most other amino acids, including phenylalanine, which fell by 34%. Plasma insulin levels were unchanged from basal levels (8 ± 1 μ-units/ml). 3. Whole-body phenylalanine flux, an index of proteolysis, was significantly suppressed by branched-chain amino acid infusion (P < 0.002), and forearm phenylalanine production was also inhibited (P < 0.03). With branched-chain amino acid infusion total leucine flux rose, with marked increments in both oxidative and non-oxidative leucine disposal (P < 0.001). Proteolysis, as measured by endogenous leucine production, showed a modest 12% decrease, although this was not significant when compared with saline controls. The net forearm balance of leucine and other branched-chain amino acids changed from a basal net output to a marked net uptake (P < 0.001) during branched-chain amino acid infusion, with significant stimulation of local leucine disposal. Despite the rise in whole-body non-oxidative leucine disposal, and in forearm leucine uptake and disposal, forearm phenylalanine disposal, an index of muscle protein synthesis, was not stimulated by infusion of branched-chain amino acids. 4. The results suggest that in normal man branched-chain amino acid infusion suppresses skeletal muscle proteolysis independently of any rise of plasma insulin. Muscle branched-chain amino acid uptake rose dramatically in the absence of any apparent increase in muscle protein synthesis, as measured by phenylalanine disposal, or in branched-chain keto acid release. Thus, an increase in muscle branched-chain amino acid concentrations and/or local branched-chain amino acid oxidation must account for the increased disposal of branched-chain amino acids.

KW - amino acid kinetics

KW - branched-chain amino acids

KW - leucine

KW - metabolism

KW - protein

KW - proteolysis

KW - skeletal muscle

UR - http://www.scopus.com/inward/record.url?scp=0025201970&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025201970&partnerID=8YFLogxK

M3 - Article

C2 - 2174312

AN - SCOPUS:0025201970

VL - 79

SP - 457

EP - 466

JO - Clinical Science

JF - Clinical Science

SN - 0143-5221

IS - 5

ER -