Differential expression of three glutamate receptor genes in developing rat brain

An in situ hybridization study

Domenico E. Pellegrini-Giampietro, Michael V. L. Bennett, R. Suzanne Zukin

Research output: Contribution to journalArticle

223 Citations (Scopus)

Abstract

Non-N-methyl-D-aspartate glutamate receptors (GluRs) are encoded by a gene family, known members of which are designated GluR-1, -2, -3, -4, and -5. The present study examined the developmental pattern of GluR-1, -2, and -3 gene expression in rat brain. In situ hybridization revealed different spatial patterns throughout the brain for the cognate mRNAs at all ages examined, as well as different temporal patterns during development. In the adult all three mRNAs were expressed prominently in the pyramidal and granule layers of the hippocampus and in the Purkinje cell layer of the cerebellum, where detailed differences were apparent at the cellular level. In neocortex, GluR-2 mRNA exhibited prominent lamination and regional differences, which were less marked for GluR-1 and -3 mRNAs. In caudate-putamen GluR-2 mRNA was at high levels, but GluR-1 and -3 mRNAs were not. At early ages transcripts were transiently elevated relative to adult levels. GluR-1 mRNA reached peak expression in cortex at postnatal day 14 (P14) (225% of adult), in striatum at P4 (255% of adult), in hippocampus at P14 (195% of adult), and in cerebellum at P21 (150% of adult). GluR-3 exhibited more modest peaks in neocortex and hippocampus. In contrast, GluR-2 mRNA was at near adult levels throughout the first days of postnatal life and exhibited a peak only in cerebellum at P14 (168% of adult). The finding of differential developmental regulation of the GluR-1, -2, and -3 genes indicates that the receptors they encode may have different influences on synaptic plasticity, neuronal survival, and susceptibility to excitatory amino acid toxicity.

Original languageEnglish (US)
Pages (from-to)4157-4161
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume88
Issue number10
StatePublished - May 15 1991

Fingerprint

Glutamate Receptors
In Situ Hybridization
Messenger RNA
Brain
Genes
Cerebellum
Hippocampus
Neocortex
D-Aspartic Acid
Excitatory Amino Acids
Neuronal Plasticity
Purkinje Cells
Putamen
Gene Expression

Keywords

  • α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
  • Excitatory amino acid receptors
  • Kainate
  • Ontogeny

ASJC Scopus subject areas

  • General
  • Genetics

Cite this

@article{9c51881971a44f6b9eadfd5eb377038d,
title = "Differential expression of three glutamate receptor genes in developing rat brain: An in situ hybridization study",
abstract = "Non-N-methyl-D-aspartate glutamate receptors (GluRs) are encoded by a gene family, known members of which are designated GluR-1, -2, -3, -4, and -5. The present study examined the developmental pattern of GluR-1, -2, and -3 gene expression in rat brain. In situ hybridization revealed different spatial patterns throughout the brain for the cognate mRNAs at all ages examined, as well as different temporal patterns during development. In the adult all three mRNAs were expressed prominently in the pyramidal and granule layers of the hippocampus and in the Purkinje cell layer of the cerebellum, where detailed differences were apparent at the cellular level. In neocortex, GluR-2 mRNA exhibited prominent lamination and regional differences, which were less marked for GluR-1 and -3 mRNAs. In caudate-putamen GluR-2 mRNA was at high levels, but GluR-1 and -3 mRNAs were not. At early ages transcripts were transiently elevated relative to adult levels. GluR-1 mRNA reached peak expression in cortex at postnatal day 14 (P14) (225{\%} of adult), in striatum at P4 (255{\%} of adult), in hippocampus at P14 (195{\%} of adult), and in cerebellum at P21 (150{\%} of adult). GluR-3 exhibited more modest peaks in neocortex and hippocampus. In contrast, GluR-2 mRNA was at near adult levels throughout the first days of postnatal life and exhibited a peak only in cerebellum at P14 (168{\%} of adult). The finding of differential developmental regulation of the GluR-1, -2, and -3 genes indicates that the receptors they encode may have different influences on synaptic plasticity, neuronal survival, and susceptibility to excitatory amino acid toxicity.",
keywords = "α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, Excitatory amino acid receptors, Kainate, Ontogeny",
author = "Pellegrini-Giampietro, {Domenico E.} and Bennett, {Michael V. L.} and Zukin, {R. Suzanne}",
year = "1991",
month = "5",
day = "15",
language = "English (US)",
volume = "88",
pages = "4157--4161",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "10",

}

TY - JOUR

T1 - Differential expression of three glutamate receptor genes in developing rat brain

T2 - An in situ hybridization study

AU - Pellegrini-Giampietro, Domenico E.

AU - Bennett, Michael V. L.

AU - Zukin, R. Suzanne

PY - 1991/5/15

Y1 - 1991/5/15

N2 - Non-N-methyl-D-aspartate glutamate receptors (GluRs) are encoded by a gene family, known members of which are designated GluR-1, -2, -3, -4, and -5. The present study examined the developmental pattern of GluR-1, -2, and -3 gene expression in rat brain. In situ hybridization revealed different spatial patterns throughout the brain for the cognate mRNAs at all ages examined, as well as different temporal patterns during development. In the adult all three mRNAs were expressed prominently in the pyramidal and granule layers of the hippocampus and in the Purkinje cell layer of the cerebellum, where detailed differences were apparent at the cellular level. In neocortex, GluR-2 mRNA exhibited prominent lamination and regional differences, which were less marked for GluR-1 and -3 mRNAs. In caudate-putamen GluR-2 mRNA was at high levels, but GluR-1 and -3 mRNAs were not. At early ages transcripts were transiently elevated relative to adult levels. GluR-1 mRNA reached peak expression in cortex at postnatal day 14 (P14) (225% of adult), in striatum at P4 (255% of adult), in hippocampus at P14 (195% of adult), and in cerebellum at P21 (150% of adult). GluR-3 exhibited more modest peaks in neocortex and hippocampus. In contrast, GluR-2 mRNA was at near adult levels throughout the first days of postnatal life and exhibited a peak only in cerebellum at P14 (168% of adult). The finding of differential developmental regulation of the GluR-1, -2, and -3 genes indicates that the receptors they encode may have different influences on synaptic plasticity, neuronal survival, and susceptibility to excitatory amino acid toxicity.

AB - Non-N-methyl-D-aspartate glutamate receptors (GluRs) are encoded by a gene family, known members of which are designated GluR-1, -2, -3, -4, and -5. The present study examined the developmental pattern of GluR-1, -2, and -3 gene expression in rat brain. In situ hybridization revealed different spatial patterns throughout the brain for the cognate mRNAs at all ages examined, as well as different temporal patterns during development. In the adult all three mRNAs were expressed prominently in the pyramidal and granule layers of the hippocampus and in the Purkinje cell layer of the cerebellum, where detailed differences were apparent at the cellular level. In neocortex, GluR-2 mRNA exhibited prominent lamination and regional differences, which were less marked for GluR-1 and -3 mRNAs. In caudate-putamen GluR-2 mRNA was at high levels, but GluR-1 and -3 mRNAs were not. At early ages transcripts were transiently elevated relative to adult levels. GluR-1 mRNA reached peak expression in cortex at postnatal day 14 (P14) (225% of adult), in striatum at P4 (255% of adult), in hippocampus at P14 (195% of adult), and in cerebellum at P21 (150% of adult). GluR-3 exhibited more modest peaks in neocortex and hippocampus. In contrast, GluR-2 mRNA was at near adult levels throughout the first days of postnatal life and exhibited a peak only in cerebellum at P14 (168% of adult). The finding of differential developmental regulation of the GluR-1, -2, and -3 genes indicates that the receptors they encode may have different influences on synaptic plasticity, neuronal survival, and susceptibility to excitatory amino acid toxicity.

KW - α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

KW - Excitatory amino acid receptors

KW - Kainate

KW - Ontogeny

UR - http://www.scopus.com/inward/record.url?scp=0025852473&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025852473&partnerID=8YFLogxK

M3 - Article

VL - 88

SP - 4157

EP - 4161

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 10

ER -