Developmental genetics of the C. elegans pharyngeal neurons NSML and NSMR

Claes Axäng, Manish Rauthan, David H. Hall, Marc Pilon

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

Background. We are interested in understanding how the twenty neurons of the C. elegans pharynx develop in an intricate yet reproducible way within the narrow confines of the embryonic pharyngeal primordium. To complement an earlier study of the pharyngeal M2 motorneurons, we have now examined the effect of almost forty mutations on the morphology of a bilateral pair of pharyngeal neurosecretory-motor neurons, the NSMs. Results. A careful description of the NSM morphology led to the discovery of a third, hitherto unreported process originating from the NSM cell body and that is likely to play a proprioceptive function. We found that the three NSM processes are differently sensitive to mutations. The major dorsal branch was most sensitive to mutations that affect growth cone guidance and function (e.g. unc-6, unc-34, unc-73), while the major sub-ventral branch was more sensitive to mutations that affect components of the extracellular matrix (e.g. sdn-1). Of the tested mutations, only unc-101, which affects an adaptin, caused the loss of the newly described thin minor process. The major processes developed synaptic branches post-embryonically, and these exhibited activity-dependent plasticity. Conclusion. By studying the effects of nearly forty different mutations we have learned that the different NSM processes require different genes for their proper guidance and use both growth cone dependent and growth cone independent mechanisms for establishing their proper trajectories. The two major NSM processes develop in a growth cone dependent manner, although the sub-ventral process relies more on substrate adhesion. The minor process also uses growth cones but uniquely develops using a mechanism that depends on the clathrin adaptor molecule UNC-101. Together with the guidance of the M2 neuron, this is the second case of a pharyngeal neuron establishing one of its processes using an unexpected mechanism.

Original languageEnglish (US)
Article number38
JournalBMC Developmental Biology
Volume8
DOIs
StatePublished - 2008

Fingerprint

Growth Cones
Neurons
Mutation
Vesicular Transport Adaptor Proteins
Motor Neurons
Pharynx
Extracellular Matrix
Genes

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Developmental genetics of the C. elegans pharyngeal neurons NSML and NSMR. / Axäng, Claes; Rauthan, Manish; Hall, David H.; Pilon, Marc.

In: BMC Developmental Biology, Vol. 8, 38, 2008.

Research output: Contribution to journalArticle

@article{fabcbdb8fb074ab687c1340f4e2414fd,
title = "Developmental genetics of the C. elegans pharyngeal neurons NSML and NSMR",
abstract = "Background. We are interested in understanding how the twenty neurons of the C. elegans pharynx develop in an intricate yet reproducible way within the narrow confines of the embryonic pharyngeal primordium. To complement an earlier study of the pharyngeal M2 motorneurons, we have now examined the effect of almost forty mutations on the morphology of a bilateral pair of pharyngeal neurosecretory-motor neurons, the NSMs. Results. A careful description of the NSM morphology led to the discovery of a third, hitherto unreported process originating from the NSM cell body and that is likely to play a proprioceptive function. We found that the three NSM processes are differently sensitive to mutations. The major dorsal branch was most sensitive to mutations that affect growth cone guidance and function (e.g. unc-6, unc-34, unc-73), while the major sub-ventral branch was more sensitive to mutations that affect components of the extracellular matrix (e.g. sdn-1). Of the tested mutations, only unc-101, which affects an adaptin, caused the loss of the newly described thin minor process. The major processes developed synaptic branches post-embryonically, and these exhibited activity-dependent plasticity. Conclusion. By studying the effects of nearly forty different mutations we have learned that the different NSM processes require different genes for their proper guidance and use both growth cone dependent and growth cone independent mechanisms for establishing their proper trajectories. The two major NSM processes develop in a growth cone dependent manner, although the sub-ventral process relies more on substrate adhesion. The minor process also uses growth cones but uniquely develops using a mechanism that depends on the clathrin adaptor molecule UNC-101. Together with the guidance of the M2 neuron, this is the second case of a pharyngeal neuron establishing one of its processes using an unexpected mechanism.",
author = "Claes Ax{\"a}ng and Manish Rauthan and Hall, {David H.} and Marc Pilon",
year = "2008",
doi = "10.1186/1471-213X-8-38",
language = "English (US)",
volume = "8",
journal = "BMC Developmental Biology",
issn = "1471-213X",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Developmental genetics of the C. elegans pharyngeal neurons NSML and NSMR

AU - Axäng, Claes

AU - Rauthan, Manish

AU - Hall, David H.

AU - Pilon, Marc

PY - 2008

Y1 - 2008

N2 - Background. We are interested in understanding how the twenty neurons of the C. elegans pharynx develop in an intricate yet reproducible way within the narrow confines of the embryonic pharyngeal primordium. To complement an earlier study of the pharyngeal M2 motorneurons, we have now examined the effect of almost forty mutations on the morphology of a bilateral pair of pharyngeal neurosecretory-motor neurons, the NSMs. Results. A careful description of the NSM morphology led to the discovery of a third, hitherto unreported process originating from the NSM cell body and that is likely to play a proprioceptive function. We found that the three NSM processes are differently sensitive to mutations. The major dorsal branch was most sensitive to mutations that affect growth cone guidance and function (e.g. unc-6, unc-34, unc-73), while the major sub-ventral branch was more sensitive to mutations that affect components of the extracellular matrix (e.g. sdn-1). Of the tested mutations, only unc-101, which affects an adaptin, caused the loss of the newly described thin minor process. The major processes developed synaptic branches post-embryonically, and these exhibited activity-dependent plasticity. Conclusion. By studying the effects of nearly forty different mutations we have learned that the different NSM processes require different genes for their proper guidance and use both growth cone dependent and growth cone independent mechanisms for establishing their proper trajectories. The two major NSM processes develop in a growth cone dependent manner, although the sub-ventral process relies more on substrate adhesion. The minor process also uses growth cones but uniquely develops using a mechanism that depends on the clathrin adaptor molecule UNC-101. Together with the guidance of the M2 neuron, this is the second case of a pharyngeal neuron establishing one of its processes using an unexpected mechanism.

AB - Background. We are interested in understanding how the twenty neurons of the C. elegans pharynx develop in an intricate yet reproducible way within the narrow confines of the embryonic pharyngeal primordium. To complement an earlier study of the pharyngeal M2 motorneurons, we have now examined the effect of almost forty mutations on the morphology of a bilateral pair of pharyngeal neurosecretory-motor neurons, the NSMs. Results. A careful description of the NSM morphology led to the discovery of a third, hitherto unreported process originating from the NSM cell body and that is likely to play a proprioceptive function. We found that the three NSM processes are differently sensitive to mutations. The major dorsal branch was most sensitive to mutations that affect growth cone guidance and function (e.g. unc-6, unc-34, unc-73), while the major sub-ventral branch was more sensitive to mutations that affect components of the extracellular matrix (e.g. sdn-1). Of the tested mutations, only unc-101, which affects an adaptin, caused the loss of the newly described thin minor process. The major processes developed synaptic branches post-embryonically, and these exhibited activity-dependent plasticity. Conclusion. By studying the effects of nearly forty different mutations we have learned that the different NSM processes require different genes for their proper guidance and use both growth cone dependent and growth cone independent mechanisms for establishing their proper trajectories. The two major NSM processes develop in a growth cone dependent manner, although the sub-ventral process relies more on substrate adhesion. The minor process also uses growth cones but uniquely develops using a mechanism that depends on the clathrin adaptor molecule UNC-101. Together with the guidance of the M2 neuron, this is the second case of a pharyngeal neuron establishing one of its processes using an unexpected mechanism.

UR - http://www.scopus.com/inward/record.url?scp=43549086414&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=43549086414&partnerID=8YFLogxK

U2 - 10.1186/1471-213X-8-38

DO - 10.1186/1471-213X-8-38

M3 - Article

C2 - 18400083

AN - SCOPUS:43549086414

VL - 8

JO - BMC Developmental Biology

JF - BMC Developmental Biology

SN - 1471-213X

M1 - 38

ER -