Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis

Research output: Contribution to journalArticlepeer-review

467 Scopus citations

Abstract

Chaperone-mediated autophagy (CMA) selectively degrades a subset of cytosolic proteins in lysosomes. A potent physiological activator of CMA is nutrient deprivation, a condition in which intracellular triglyceride stores or lipid droplets (LDs) also undergo hydrolysis (lipolysis) to generate free fatty acids for energetic purposes. Here we report that the LD-associated proteins perilipin 2 (PLIN2) and perilipin 3 (PLIN3) are CMA substrates and their degradation through CMA precedes lipolysis. In vivo studies revealed that CMA degradation of PLIN2 and PLIN3 was enhanced during starvation, concurrent with elevated levels of cytosolic adipose triglyceride lipase (ATGL) and macroautophagy proteins on LDs. CMA blockage both in cultured cells and mouse liver or expression of CMA-resistant PLINs leads to reduced association of ATGL and macrolipophagy-related proteins with LDs and the subsequent decrease in lipid oxidation and accumulation of LDs. We propose a role for CMA in LD biology and in the maintenance of lipid homeostasis.

Original languageEnglish (US)
Pages (from-to)759-770
Number of pages12
JournalNature Cell Biology
Volume17
Issue number6
DOIs
StatePublished - Jun 1 2015

ASJC Scopus subject areas

  • Cell Biology

Fingerprint

Dive into the research topics of 'Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis'. Together they form a unique fingerprint.

Cite this