TY - JOUR
T1 - Defects in G protein-coupled signal transduction in human disease
AU - Spiegel, A. M.
PY - 1996/1/1
Y1 - 1996/1/1
N2 - G proteins couple receptors for many hormones and neurotransmitters to effectors that regulate second messenger metabolism. G protein-coupled receptors comprise a superfamily with the common structural feature of a single polypeptide with seven membrane-spanning domains. G proteins themselves are heterotrimers with an α subunit that binds guanine nucleotides. In the basal state, G proteins tightly bind GDP; receptor activation allows exchange of bound GDP for GTP that activates the G protein and causes it to modulate effector activity. An intrinsic GTPase activity hydrolyzes bound GTP to GDP thereby deactivating the G protein. The effects (cholera, whooping cough) of bacterial toxins that target G proteins for covalent modification signal the potential importance of G protein dysfunction as a cause of human disease. Conceptually, G protein dysfunction could involve gain or loss of function. For G(s), examples of both types have already been defined. Mutations in G protein-coupled receptors have also been identified in several human diseases. Germline loss of function mutations in rhodopsin, cone opsins, the V2 vasopressin receptor, ACTH receptor, and calcium-sensing receptor are responsible for retinitis pigmentosa, color blindness, nephrogenic diabetes insipidus, familial ACTH resistance, and familial hypocalciuric hypercalcemia, respectively. Missense mutations that cause constitutive receptor activation have been identified in the TSH and LH receptors.
AB - G proteins couple receptors for many hormones and neurotransmitters to effectors that regulate second messenger metabolism. G protein-coupled receptors comprise a superfamily with the common structural feature of a single polypeptide with seven membrane-spanning domains. G proteins themselves are heterotrimers with an α subunit that binds guanine nucleotides. In the basal state, G proteins tightly bind GDP; receptor activation allows exchange of bound GDP for GTP that activates the G protein and causes it to modulate effector activity. An intrinsic GTPase activity hydrolyzes bound GTP to GDP thereby deactivating the G protein. The effects (cholera, whooping cough) of bacterial toxins that target G proteins for covalent modification signal the potential importance of G protein dysfunction as a cause of human disease. Conceptually, G protein dysfunction could involve gain or loss of function. For G(s), examples of both types have already been defined. Mutations in G protein-coupled receptors have also been identified in several human diseases. Germline loss of function mutations in rhodopsin, cone opsins, the V2 vasopressin receptor, ACTH receptor, and calcium-sensing receptor are responsible for retinitis pigmentosa, color blindness, nephrogenic diabetes insipidus, familial ACTH resistance, and familial hypocalciuric hypercalcemia, respectively. Missense mutations that cause constitutive receptor activation have been identified in the TSH and LH receptors.
KW - GTPase
KW - endocrine hyperfunction
KW - hormone resistance
KW - mutations
KW - receptor
UR - http://www.scopus.com/inward/record.url?scp=0029963793&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029963793&partnerID=8YFLogxK
U2 - 10.1146/annurev.ph.58.030196.001043
DO - 10.1146/annurev.ph.58.030196.001043
M3 - Review article
C2 - 8815789
AN - SCOPUS:0029963793
SN - 0066-4278
VL - 58
SP - 143
EP - 170
JO - Annual Review of Physiology
JF - Annual Review of Physiology
ER -