Cross contamination of intramyocellular lipid signals through loss of bulk magnetic susceptibility effect differences in human muscle using 1H-MRSI at 4 T

Min-Hui Cui, Jong Hee Hwang, Vlad A. Tomuta, Zhengchao Dong, Daniel T. Stein

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Cross contamination of intramyocellular lipid (IMCL) signals through loss of bulk magnetic susceptibility (BMS) differences was detected in human muscles using proton magnetic resonance spectroscopic imaging (1H-MRSI) at 4 T by varying nominal voxel sizes on healthy subjects. In soleus muscle the IMCL content estimated in 1.00-ml-sized voxels was 15% and 30% higher than that in 0.25-ml voxels for nonobese (P < 0.05) and obese (P < 0.01) subjects, respectively, whereas no effect was observed on IMCL estimation in tibialis posterior (TP) and tibialis anterior (TA) regions for different voxel sizes. The unbiased 0.25-ml voxel size 1H-MRSI method was applied to measure IMCL content in nonobese sedentary (NOB-Sed), moderately trained (Ath), sedentary obese (OB), and Type 2 diabetic mellitus (DM) subjects. IMCL content in soleus was greatest in OB, with decreasing content in DM, Ath, and NOB-Sed, respectively (12.6 ± 1.6, 9.7 ± 1.8, 7.4 ± 1.0, 4.9 ± 0.5 mmol/kg wet wt; P < 0.05 by ANOVA; P < 0.05 OB vs. NOB-Sed or Ath). In TA, IMCL was equivalently elevated in DM and OB, which was higher than in Ath or NOB-Sed, respectively (4.2 ± 0.4 and 4.2 ± 0.7 vs. 2.7 ± 0.5 and 1.5 ± 0.3 mmol/kg wet wt; ANOVA, P < 0.05; P < 0.05 DM or OB vs. NOB-Sed). We conclude that IMCL content is overestimated when voxel size exceeds 0.25 ml despite measurement by optimized high-resolution 1H-MRSI at high field. When IMCL is measured unbiased by concomitant obesity, we find that it is strongly influenced by muscle type, training status, and the presence of obesity and Type 2 diabetes.

Original languageEnglish (US)
Pages (from-to)1290-1298
Number of pages9
JournalJournal of Applied Physiology
Volume103
Issue number4
DOIs
StatePublished - Oct 2007

Fingerprint

Lipids
Muscles
Analysis of Variance
Obesity
Type 2 Diabetes Mellitus
Protons
Healthy Volunteers
Skeletal Muscle
Magnetic Resonance Imaging

Keywords

  • Bulk magnetic susceptibility
  • Higher magnetic field
  • Intramyocellular lipid
  • Proton magnetic resonance spectroscopic imaging
  • Signal cross contamination

ASJC Scopus subject areas

  • Physiology
  • Endocrinology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Cite this

@article{ecefcb2b6c8d4795b6cab46a827e044e,
title = "Cross contamination of intramyocellular lipid signals through loss of bulk magnetic susceptibility effect differences in human muscle using 1H-MRSI at 4 T",
abstract = "Cross contamination of intramyocellular lipid (IMCL) signals through loss of bulk magnetic susceptibility (BMS) differences was detected in human muscles using proton magnetic resonance spectroscopic imaging (1H-MRSI) at 4 T by varying nominal voxel sizes on healthy subjects. In soleus muscle the IMCL content estimated in 1.00-ml-sized voxels was 15{\%} and 30{\%} higher than that in 0.25-ml voxels for nonobese (P < 0.05) and obese (P < 0.01) subjects, respectively, whereas no effect was observed on IMCL estimation in tibialis posterior (TP) and tibialis anterior (TA) regions for different voxel sizes. The unbiased 0.25-ml voxel size 1H-MRSI method was applied to measure IMCL content in nonobese sedentary (NOB-Sed), moderately trained (Ath), sedentary obese (OB), and Type 2 diabetic mellitus (DM) subjects. IMCL content in soleus was greatest in OB, with decreasing content in DM, Ath, and NOB-Sed, respectively (12.6 ± 1.6, 9.7 ± 1.8, 7.4 ± 1.0, 4.9 ± 0.5 mmol/kg wet wt; P < 0.05 by ANOVA; P < 0.05 OB vs. NOB-Sed or Ath). In TA, IMCL was equivalently elevated in DM and OB, which was higher than in Ath or NOB-Sed, respectively (4.2 ± 0.4 and 4.2 ± 0.7 vs. 2.7 ± 0.5 and 1.5 ± 0.3 mmol/kg wet wt; ANOVA, P < 0.05; P < 0.05 DM or OB vs. NOB-Sed). We conclude that IMCL content is overestimated when voxel size exceeds 0.25 ml despite measurement by optimized high-resolution 1H-MRSI at high field. When IMCL is measured unbiased by concomitant obesity, we find that it is strongly influenced by muscle type, training status, and the presence of obesity and Type 2 diabetes.",
keywords = "Bulk magnetic susceptibility, Higher magnetic field, Intramyocellular lipid, Proton magnetic resonance spectroscopic imaging, Signal cross contamination",
author = "Min-Hui Cui and Hwang, {Jong Hee} and Tomuta, {Vlad A.} and Zhengchao Dong and Stein, {Daniel T.}",
year = "2007",
month = "10",
doi = "10.1152/japplphysiol.01088.2006",
language = "English (US)",
volume = "103",
pages = "1290--1298",
journal = "Journal of Applied Physiology",
issn = "8750-7587",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Cross contamination of intramyocellular lipid signals through loss of bulk magnetic susceptibility effect differences in human muscle using 1H-MRSI at 4 T

AU - Cui, Min-Hui

AU - Hwang, Jong Hee

AU - Tomuta, Vlad A.

AU - Dong, Zhengchao

AU - Stein, Daniel T.

PY - 2007/10

Y1 - 2007/10

N2 - Cross contamination of intramyocellular lipid (IMCL) signals through loss of bulk magnetic susceptibility (BMS) differences was detected in human muscles using proton magnetic resonance spectroscopic imaging (1H-MRSI) at 4 T by varying nominal voxel sizes on healthy subjects. In soleus muscle the IMCL content estimated in 1.00-ml-sized voxels was 15% and 30% higher than that in 0.25-ml voxels for nonobese (P < 0.05) and obese (P < 0.01) subjects, respectively, whereas no effect was observed on IMCL estimation in tibialis posterior (TP) and tibialis anterior (TA) regions for different voxel sizes. The unbiased 0.25-ml voxel size 1H-MRSI method was applied to measure IMCL content in nonobese sedentary (NOB-Sed), moderately trained (Ath), sedentary obese (OB), and Type 2 diabetic mellitus (DM) subjects. IMCL content in soleus was greatest in OB, with decreasing content in DM, Ath, and NOB-Sed, respectively (12.6 ± 1.6, 9.7 ± 1.8, 7.4 ± 1.0, 4.9 ± 0.5 mmol/kg wet wt; P < 0.05 by ANOVA; P < 0.05 OB vs. NOB-Sed or Ath). In TA, IMCL was equivalently elevated in DM and OB, which was higher than in Ath or NOB-Sed, respectively (4.2 ± 0.4 and 4.2 ± 0.7 vs. 2.7 ± 0.5 and 1.5 ± 0.3 mmol/kg wet wt; ANOVA, P < 0.05; P < 0.05 DM or OB vs. NOB-Sed). We conclude that IMCL content is overestimated when voxel size exceeds 0.25 ml despite measurement by optimized high-resolution 1H-MRSI at high field. When IMCL is measured unbiased by concomitant obesity, we find that it is strongly influenced by muscle type, training status, and the presence of obesity and Type 2 diabetes.

AB - Cross contamination of intramyocellular lipid (IMCL) signals through loss of bulk magnetic susceptibility (BMS) differences was detected in human muscles using proton magnetic resonance spectroscopic imaging (1H-MRSI) at 4 T by varying nominal voxel sizes on healthy subjects. In soleus muscle the IMCL content estimated in 1.00-ml-sized voxels was 15% and 30% higher than that in 0.25-ml voxels for nonobese (P < 0.05) and obese (P < 0.01) subjects, respectively, whereas no effect was observed on IMCL estimation in tibialis posterior (TP) and tibialis anterior (TA) regions for different voxel sizes. The unbiased 0.25-ml voxel size 1H-MRSI method was applied to measure IMCL content in nonobese sedentary (NOB-Sed), moderately trained (Ath), sedentary obese (OB), and Type 2 diabetic mellitus (DM) subjects. IMCL content in soleus was greatest in OB, with decreasing content in DM, Ath, and NOB-Sed, respectively (12.6 ± 1.6, 9.7 ± 1.8, 7.4 ± 1.0, 4.9 ± 0.5 mmol/kg wet wt; P < 0.05 by ANOVA; P < 0.05 OB vs. NOB-Sed or Ath). In TA, IMCL was equivalently elevated in DM and OB, which was higher than in Ath or NOB-Sed, respectively (4.2 ± 0.4 and 4.2 ± 0.7 vs. 2.7 ± 0.5 and 1.5 ± 0.3 mmol/kg wet wt; ANOVA, P < 0.05; P < 0.05 DM or OB vs. NOB-Sed). We conclude that IMCL content is overestimated when voxel size exceeds 0.25 ml despite measurement by optimized high-resolution 1H-MRSI at high field. When IMCL is measured unbiased by concomitant obesity, we find that it is strongly influenced by muscle type, training status, and the presence of obesity and Type 2 diabetes.

KW - Bulk magnetic susceptibility

KW - Higher magnetic field

KW - Intramyocellular lipid

KW - Proton magnetic resonance spectroscopic imaging

KW - Signal cross contamination

UR - http://www.scopus.com/inward/record.url?scp=35348973950&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=35348973950&partnerID=8YFLogxK

U2 - 10.1152/japplphysiol.01088.2006

DO - 10.1152/japplphysiol.01088.2006

M3 - Article

VL - 103

SP - 1290

EP - 1298

JO - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 8750-7587

IS - 4

ER -