Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors

Weigang Wang, Jeffrey B. Wyckoff, Sumanta Goswami, Yarong Wang, Mazen Sidani, Jeffrey E. Segall, John S. Condeelis

Research output: Contribution to journalArticle

127 Citations (Scopus)

Abstract

Correlating tumor cell behavior in vivo with patterns of gene expression has led to new insights into the microenvironment of tumor cells in the primary tumor. Until now, these studies have been done with cell line-derived tumors. In the current study, we have analyzed, in polyoma middle T oncogene (PyMT)-derived mammary tumors, tumor cell behavior and gene expression patterns of the invasive subpopulation of tumor cells by multiphoton-based intravital imaging and microarray-based expression profiling, respectively. Our results indicate that the patterns of cell behavior that contribute to invasion and metastasis in the PyMT tumor are similar to those seen previously in rat MTLn3 cell line-derived mammary tumors. The invasive tumor cells collected from PyMT mouse mammary tumors, like their counterparts from rat xenograft mammary tumors, are a population that is relatively nondividing and nonapoptotic but chemotherapy resistant and chemotactic. Changes in the expression of genes that occur uniquely in the invasive subpopulation of tumor cells in the PyMT mammary tumors that fall on the Arp2/3 complex, capping protein and cofilin pathways show a pattern like that seen previously in invasive tumor cells from the MTLn3 cell line-derived tumors. These changes predict an enhanced activity of the cofilin pathway, and this was confirmed in isolated invasive PyMT tumor cells. We conclude that changes in gene expression and their related changes in cell behavior, which were identified in the invasive tumor cells of cell line-derived tumors, are conserved in the invasive tumor cells of PyMT-derived mouse mammary tumors, although these tumor types have different genetic origins.

Original languageEnglish (US)
Pages (from-to)3505-3511
Number of pages7
JournalCancer Research
Volume67
Issue number8
DOIs
StatePublished - Apr 15 2007

Fingerprint

Chemotaxis
Cell Movement
Breast Neoplasms
Oncogenes
Neoplasms
Tumor Cell Line
Actin Depolymerizing Factors
Gene Expression
Actin-Related Protein 2-3 Complex
Cellular Microenvironment
Tumor Microenvironment
Heterografts
Neoplasm Metastasis
Drug Therapy
Cell Line

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. / Wang, Weigang; Wyckoff, Jeffrey B.; Goswami, Sumanta; Wang, Yarong; Sidani, Mazen; Segall, Jeffrey E.; Condeelis, John S.

In: Cancer Research, Vol. 67, No. 8, 15.04.2007, p. 3505-3511.

Research output: Contribution to journalArticle

@article{4c8078535bc74b9bb54bf254f2028e3a,
title = "Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors",
abstract = "Correlating tumor cell behavior in vivo with patterns of gene expression has led to new insights into the microenvironment of tumor cells in the primary tumor. Until now, these studies have been done with cell line-derived tumors. In the current study, we have analyzed, in polyoma middle T oncogene (PyMT)-derived mammary tumors, tumor cell behavior and gene expression patterns of the invasive subpopulation of tumor cells by multiphoton-based intravital imaging and microarray-based expression profiling, respectively. Our results indicate that the patterns of cell behavior that contribute to invasion and metastasis in the PyMT tumor are similar to those seen previously in rat MTLn3 cell line-derived mammary tumors. The invasive tumor cells collected from PyMT mouse mammary tumors, like their counterparts from rat xenograft mammary tumors, are a population that is relatively nondividing and nonapoptotic but chemotherapy resistant and chemotactic. Changes in the expression of genes that occur uniquely in the invasive subpopulation of tumor cells in the PyMT mammary tumors that fall on the Arp2/3 complex, capping protein and cofilin pathways show a pattern like that seen previously in invasive tumor cells from the MTLn3 cell line-derived tumors. These changes predict an enhanced activity of the cofilin pathway, and this was confirmed in isolated invasive PyMT tumor cells. We conclude that changes in gene expression and their related changes in cell behavior, which were identified in the invasive tumor cells of cell line-derived tumors, are conserved in the invasive tumor cells of PyMT-derived mouse mammary tumors, although these tumor types have different genetic origins.",
author = "Weigang Wang and Wyckoff, {Jeffrey B.} and Sumanta Goswami and Yarong Wang and Mazen Sidani and Segall, {Jeffrey E.} and Condeelis, {John S.}",
year = "2007",
month = "4",
day = "15",
doi = "10.1158/0008-5472.CAN-06-3714",
language = "English (US)",
volume = "67",
pages = "3505--3511",
journal = "Cancer Research",
issn = "0008-5472",
publisher = "American Association for Cancer Research Inc.",
number = "8",

}

TY - JOUR

T1 - Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors

AU - Wang, Weigang

AU - Wyckoff, Jeffrey B.

AU - Goswami, Sumanta

AU - Wang, Yarong

AU - Sidani, Mazen

AU - Segall, Jeffrey E.

AU - Condeelis, John S.

PY - 2007/4/15

Y1 - 2007/4/15

N2 - Correlating tumor cell behavior in vivo with patterns of gene expression has led to new insights into the microenvironment of tumor cells in the primary tumor. Until now, these studies have been done with cell line-derived tumors. In the current study, we have analyzed, in polyoma middle T oncogene (PyMT)-derived mammary tumors, tumor cell behavior and gene expression patterns of the invasive subpopulation of tumor cells by multiphoton-based intravital imaging and microarray-based expression profiling, respectively. Our results indicate that the patterns of cell behavior that contribute to invasion and metastasis in the PyMT tumor are similar to those seen previously in rat MTLn3 cell line-derived mammary tumors. The invasive tumor cells collected from PyMT mouse mammary tumors, like their counterparts from rat xenograft mammary tumors, are a population that is relatively nondividing and nonapoptotic but chemotherapy resistant and chemotactic. Changes in the expression of genes that occur uniquely in the invasive subpopulation of tumor cells in the PyMT mammary tumors that fall on the Arp2/3 complex, capping protein and cofilin pathways show a pattern like that seen previously in invasive tumor cells from the MTLn3 cell line-derived tumors. These changes predict an enhanced activity of the cofilin pathway, and this was confirmed in isolated invasive PyMT tumor cells. We conclude that changes in gene expression and their related changes in cell behavior, which were identified in the invasive tumor cells of cell line-derived tumors, are conserved in the invasive tumor cells of PyMT-derived mouse mammary tumors, although these tumor types have different genetic origins.

AB - Correlating tumor cell behavior in vivo with patterns of gene expression has led to new insights into the microenvironment of tumor cells in the primary tumor. Until now, these studies have been done with cell line-derived tumors. In the current study, we have analyzed, in polyoma middle T oncogene (PyMT)-derived mammary tumors, tumor cell behavior and gene expression patterns of the invasive subpopulation of tumor cells by multiphoton-based intravital imaging and microarray-based expression profiling, respectively. Our results indicate that the patterns of cell behavior that contribute to invasion and metastasis in the PyMT tumor are similar to those seen previously in rat MTLn3 cell line-derived mammary tumors. The invasive tumor cells collected from PyMT mouse mammary tumors, like their counterparts from rat xenograft mammary tumors, are a population that is relatively nondividing and nonapoptotic but chemotherapy resistant and chemotactic. Changes in the expression of genes that occur uniquely in the invasive subpopulation of tumor cells in the PyMT mammary tumors that fall on the Arp2/3 complex, capping protein and cofilin pathways show a pattern like that seen previously in invasive tumor cells from the MTLn3 cell line-derived tumors. These changes predict an enhanced activity of the cofilin pathway, and this was confirmed in isolated invasive PyMT tumor cells. We conclude that changes in gene expression and their related changes in cell behavior, which were identified in the invasive tumor cells of cell line-derived tumors, are conserved in the invasive tumor cells of PyMT-derived mouse mammary tumors, although these tumor types have different genetic origins.

UR - http://www.scopus.com/inward/record.url?scp=34248586312&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34248586312&partnerID=8YFLogxK

U2 - 10.1158/0008-5472.CAN-06-3714

DO - 10.1158/0008-5472.CAN-06-3714

M3 - Article

VL - 67

SP - 3505

EP - 3511

JO - Cancer Research

JF - Cancer Research

SN - 0008-5472

IS - 8

ER -