Control of cytoplasmic dynein force production and processivity by its C-terminal domain

Matthew P. Nicholas, Peter Höök, Sibylle Brenner, Caitlin L. Wynne, Richard B. Vallee, Arne Gennerich

Research output: Contribution to journalArticle

53 Scopus citations

Abstract

Cytoplasmic dynein is a microtubule motor involved in cargo transport, nuclear migration and cell division. Despite structural conservation of the dynein motor domain from yeast to higher eukaryotes, the extensively studied S. cerevisiae dynein behaves distinctly from mammalian dyneins, which produce far less force and travel over shorter distances. However, isolated reports of yeast-like force production by mammalian dynein have called interspecies differences into question. We report that functional differences between yeast and mammalian dynein are real and attributable to a C-terminal motor element absent in yeast, which resembles a over the central pore of the mammalian dynein motor domain. Removal of this cap increases the force generation of rat dynein from 1 pN to a yeast-like 6 pN and greatly increases its travel distance. Our findings identify the CT-cap as a novel regulator of dynein function.

Original languageEnglish (US)
Article number6206
JournalNature communications
Volume6
DOIs
StatePublished - Feb 2015

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Control of cytoplasmic dynein force production and processivity by its C-terminal domain'. Together they form a unique fingerprint.

  • Cite this