Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF

P. Chen, R. E. Ruiz, Q. Li, R. F. Silver, W. R. Bishai

Research output: Contribution to journalArticlepeer-review

123 Scopus citations

Abstract

The alternate RNA polymerase sigma factor gene, sigF, which is expressed in stationary phase and under stress conditions in vitro, has been deleted in the virulent CDC1551 strain of Mycobacterium tuberculosis. The growth rate of the ΔsigF mutant was identical to that of the isogenic wild-type strain in exponential phase, although in stationary phase the mutant achieved a higher density than the wild type. The mutant showed increased susceptibility to rifampin and rifapentine. Additionally, the ΔsigF mutant displayed diminished uptake of chenodeoxycholate, and this effect was reversed by complementation with a wild-type sigF gene. No differences in short-term intracellular growth between mutant and wild-type organisms within human monocytes were observed. Similarly, the organisms did not differ in their susceptibilities to lymphocyte-mediated inhibition of intracellular growth. However, mice infected with the ΔsigF mutant showed a median time to death of 246 days compared with 161 days for wild-type strain-infected animals (P < 0.001). These data indicate that M. tuberculosis sigF is a nonessential alternate sigma factor both in axenic culture and for survival in macrophages in vitro. While the ΔsigF mutant produces a lethal infection of mice, it is less virulent than its wild-type counterpart by time-to-death analysis.

Original languageEnglish (US)
Pages (from-to)5575-5580
Number of pages6
JournalInfection and immunity
Volume68
Issue number10
DOIs
StatePublished - 2000
Externally publishedYes

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF'. Together they form a unique fingerprint.

Cite this