Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates

The anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity

Yuen Jong Liu, Deyou Zheng, Suganthi Balasubramanian, Nicholas Carriero, Ekta Khurana, Rebecca Robilotto, Mark B. Gerstein

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

Background: Pseudogenes provide a record of the molecular evolution of genes. As glycolysis is such a highly conserved and fundamental metabolic pathway, the pseudogenes of glycolytic enzymes comprise a standardized genomic measuring stick and an ideal platform for studying molecular evolution. One of the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has already been noted to have one of the largest numbers of associated pseudogenes, among all proteins. Results: We assembled the first comprehensive catalog of the processed and duplicated pseudogenes of glycolytic enzymes in many vertebrate model-organism genomes, including human, chimpanzee, mouse, rat, chicken, zebrafish, pufferfish, fruitfly, and worm (available at http://pseudogene.org/glycolysis/). We found that glycolytic pseudogenes are predominantly processed, i.e. retrotransposed from the mRNA of their parent genes. Although each glycolytic enzyme plays a unique role, GAPDH has by far the most pseudogenes, perhaps reflecting its large number of non-glycolytic functions or its possession of a particularly retrotranspositionally active sub-sequence. Furthermore, the number of GAPDH pseudogenes varies significantly among the genomes we studied: none in zebrafish, pufferfish, fruitfly, and worm, 1 in chicken, 50 in chimpanzee, 62 in human, 331 in mouse, and 364 in rat. Next, we developed a simple method of identifying conserved syntenic blocks (consistently applicable to the wide range of organisms in the study) by using orthologous genes as anchors delimiting a conserved block between a pair of genomes. This approach showed that few glycolytic pseudogenes are shared between primate and rodent lineages. Finally, by estimating pseudogene ages using Kimura's two-parameter model of nucleotide substitution, we found evidence for bursts of retrotranspositional activity approximately 42, 36, and 26 million years ago in the human, mouse, and rat lineages, respectively. Conclusion: Overall, we performed a consistent analysis of one group of pseudogenes across multiple genomes, finding evidence that most of them were created within the last 50 million years, subsequent to the divergence of rodent and primate lineages.

Original languageEnglish (US)
Article number1471
Pages (from-to)480
Number of pages1
JournalBMC Genomics
Volume10
DOIs
StatePublished - Oct 16 2009

Fingerprint

Pseudogenes
Glyceraldehyde-3-Phosphate Dehydrogenases
Vertebrates
Enzymes
Tetraodontiformes
Pan troglodytes
Molecular Evolution
Genome
Zebrafish
Glycolysis
Primates
Chickens
Rodentia
Genes
Statistical Models
Human Genome
Metabolic Networks and Pathways
Nucleotides

ASJC Scopus subject areas

  • Biotechnology
  • Genetics

Cite this

Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates : The anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity. / Liu, Yuen Jong; Zheng, Deyou; Balasubramanian, Suganthi; Carriero, Nicholas; Khurana, Ekta; Robilotto, Rebecca; Gerstein, Mark B.

In: BMC Genomics, Vol. 10, 1471, 16.10.2009, p. 480.

Research output: Contribution to journalArticle

Liu, Yuen Jong ; Zheng, Deyou ; Balasubramanian, Suganthi ; Carriero, Nicholas ; Khurana, Ekta ; Robilotto, Rebecca ; Gerstein, Mark B. / Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates : The anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity. In: BMC Genomics. 2009 ; Vol. 10. pp. 480.
@article{6640e29adec644e68268f9f68ba71e20,
title = "Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: The anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity",
abstract = "Background: Pseudogenes provide a record of the molecular evolution of genes. As glycolysis is such a highly conserved and fundamental metabolic pathway, the pseudogenes of glycolytic enzymes comprise a standardized genomic measuring stick and an ideal platform for studying molecular evolution. One of the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has already been noted to have one of the largest numbers of associated pseudogenes, among all proteins. Results: We assembled the first comprehensive catalog of the processed and duplicated pseudogenes of glycolytic enzymes in many vertebrate model-organism genomes, including human, chimpanzee, mouse, rat, chicken, zebrafish, pufferfish, fruitfly, and worm (available at http://pseudogene.org/glycolysis/). We found that glycolytic pseudogenes are predominantly processed, i.e. retrotransposed from the mRNA of their parent genes. Although each glycolytic enzyme plays a unique role, GAPDH has by far the most pseudogenes, perhaps reflecting its large number of non-glycolytic functions or its possession of a particularly retrotranspositionally active sub-sequence. Furthermore, the number of GAPDH pseudogenes varies significantly among the genomes we studied: none in zebrafish, pufferfish, fruitfly, and worm, 1 in chicken, 50 in chimpanzee, 62 in human, 331 in mouse, and 364 in rat. Next, we developed a simple method of identifying conserved syntenic blocks (consistently applicable to the wide range of organisms in the study) by using orthologous genes as anchors delimiting a conserved block between a pair of genomes. This approach showed that few glycolytic pseudogenes are shared between primate and rodent lineages. Finally, by estimating pseudogene ages using Kimura's two-parameter model of nucleotide substitution, we found evidence for bursts of retrotranspositional activity approximately 42, 36, and 26 million years ago in the human, mouse, and rat lineages, respectively. Conclusion: Overall, we performed a consistent analysis of one group of pseudogenes across multiple genomes, finding evidence that most of them were created within the last 50 million years, subsequent to the divergence of rodent and primate lineages.",
author = "Liu, {Yuen Jong} and Deyou Zheng and Suganthi Balasubramanian and Nicholas Carriero and Ekta Khurana and Rebecca Robilotto and Gerstein, {Mark B.}",
year = "2009",
month = "10",
day = "16",
doi = "10.1186/1471-2164-10-480",
language = "English (US)",
volume = "10",
pages = "480",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates

T2 - The anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity

AU - Liu, Yuen Jong

AU - Zheng, Deyou

AU - Balasubramanian, Suganthi

AU - Carriero, Nicholas

AU - Khurana, Ekta

AU - Robilotto, Rebecca

AU - Gerstein, Mark B.

PY - 2009/10/16

Y1 - 2009/10/16

N2 - Background: Pseudogenes provide a record of the molecular evolution of genes. As glycolysis is such a highly conserved and fundamental metabolic pathway, the pseudogenes of glycolytic enzymes comprise a standardized genomic measuring stick and an ideal platform for studying molecular evolution. One of the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has already been noted to have one of the largest numbers of associated pseudogenes, among all proteins. Results: We assembled the first comprehensive catalog of the processed and duplicated pseudogenes of glycolytic enzymes in many vertebrate model-organism genomes, including human, chimpanzee, mouse, rat, chicken, zebrafish, pufferfish, fruitfly, and worm (available at http://pseudogene.org/glycolysis/). We found that glycolytic pseudogenes are predominantly processed, i.e. retrotransposed from the mRNA of their parent genes. Although each glycolytic enzyme plays a unique role, GAPDH has by far the most pseudogenes, perhaps reflecting its large number of non-glycolytic functions or its possession of a particularly retrotranspositionally active sub-sequence. Furthermore, the number of GAPDH pseudogenes varies significantly among the genomes we studied: none in zebrafish, pufferfish, fruitfly, and worm, 1 in chicken, 50 in chimpanzee, 62 in human, 331 in mouse, and 364 in rat. Next, we developed a simple method of identifying conserved syntenic blocks (consistently applicable to the wide range of organisms in the study) by using orthologous genes as anchors delimiting a conserved block between a pair of genomes. This approach showed that few glycolytic pseudogenes are shared between primate and rodent lineages. Finally, by estimating pseudogene ages using Kimura's two-parameter model of nucleotide substitution, we found evidence for bursts of retrotranspositional activity approximately 42, 36, and 26 million years ago in the human, mouse, and rat lineages, respectively. Conclusion: Overall, we performed a consistent analysis of one group of pseudogenes across multiple genomes, finding evidence that most of them were created within the last 50 million years, subsequent to the divergence of rodent and primate lineages.

AB - Background: Pseudogenes provide a record of the molecular evolution of genes. As glycolysis is such a highly conserved and fundamental metabolic pathway, the pseudogenes of glycolytic enzymes comprise a standardized genomic measuring stick and an ideal platform for studying molecular evolution. One of the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has already been noted to have one of the largest numbers of associated pseudogenes, among all proteins. Results: We assembled the first comprehensive catalog of the processed and duplicated pseudogenes of glycolytic enzymes in many vertebrate model-organism genomes, including human, chimpanzee, mouse, rat, chicken, zebrafish, pufferfish, fruitfly, and worm (available at http://pseudogene.org/glycolysis/). We found that glycolytic pseudogenes are predominantly processed, i.e. retrotransposed from the mRNA of their parent genes. Although each glycolytic enzyme plays a unique role, GAPDH has by far the most pseudogenes, perhaps reflecting its large number of non-glycolytic functions or its possession of a particularly retrotranspositionally active sub-sequence. Furthermore, the number of GAPDH pseudogenes varies significantly among the genomes we studied: none in zebrafish, pufferfish, fruitfly, and worm, 1 in chicken, 50 in chimpanzee, 62 in human, 331 in mouse, and 364 in rat. Next, we developed a simple method of identifying conserved syntenic blocks (consistently applicable to the wide range of organisms in the study) by using orthologous genes as anchors delimiting a conserved block between a pair of genomes. This approach showed that few glycolytic pseudogenes are shared between primate and rodent lineages. Finally, by estimating pseudogene ages using Kimura's two-parameter model of nucleotide substitution, we found evidence for bursts of retrotranspositional activity approximately 42, 36, and 26 million years ago in the human, mouse, and rat lineages, respectively. Conclusion: Overall, we performed a consistent analysis of one group of pseudogenes across multiple genomes, finding evidence that most of them were created within the last 50 million years, subsequent to the divergence of rodent and primate lineages.

UR - http://www.scopus.com/inward/record.url?scp=70449706229&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70449706229&partnerID=8YFLogxK

U2 - 10.1186/1471-2164-10-480

DO - 10.1186/1471-2164-10-480

M3 - Article

VL - 10

SP - 480

JO - BMC Genomics

JF - BMC Genomics

SN - 1471-2164

M1 - 1471

ER -