Abstract
Over the last few decades, considerable evidence shows that greater levels of aerobic exercise and cardiovascular fitness benefit cognitive performance. However, the degree to which free-living activity in community settings is related to cognitive performance remains unclear, particularly in older adults vulnerable to disability. Also, it is unknown whether the manner in which daily physical activity (PA) and sedentary time are accumulated throughout the day is associated with cognition. Cross-sectional associations between accelerometer-characterized PA and sedentary patterns and cognitive performance were examined in 1,274 mobility-limited older adults. Percent time spent in various bout lengths of PA (≥1, ≥2, and ≥5 min) and sedentary (≥1, ≥30, and ≥60 min) was defined as the number of minutes registered divided by total wear time × 100. Percent time was then tertiled for each bout length. Multiple linear regression models were used to estimate the associations between accelerometer bout variables and separate cognitive domains that included processing speed (Digit Symbol Coding; DSC), immediate and delayed recall (Hopkins Verbal Learning Test; HVLT), information processing and selective attention (Flanker), working memory (n-back), reaction time (switch and non-switch reaction time), and a composite score that averaged results from all cognitive tests. After adjusting for demographics, behavioral factors, and morbid conditions, more time spent in PA was associated with higher DSC for all bout lengths (p < 0.03 for all). Higher PA was associated with higher HVLT and global cognition scores but only for longer bout lengths (p < 0.05 for all). The association was largely driven by participants who spent the lowest amount of time performing activity while awake (p < 0.04). An inverse linear relationship was observed between total sedentary time and DSC (p = 0.02), but not for other measures of cognition. These results suggest that, while higher PA was associated with higher cognitive performance, PA’s association with memory was sensitive to bout duration. The time, but not the manner, spent in sedentary behaviors showed a minor association with executive function. Further research is warranted to characterize longitudinal changes in daily activity and sedentary patterns as potential biophysical markers of cognitive status in older adults.
Original language | English (US) |
---|---|
Article number | 341 |
Journal | Frontiers in Aging Neuroscience |
Volume | 10 |
DOIs | |
State | Published - Nov 15 2018 |
Externally published | Yes |
Keywords
- accelerometer
- aging
- cognition
- executive function
- physical inactivity
- wearables
ASJC Scopus subject areas
- Aging
- Cognitive Neuroscience
Fingerprint
Dive into the research topics of 'Community-Based Activity and Sedentary Patterns Are Associated With Cognitive Performance in Mobility-Limited Older Adults'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Community-Based Activity and Sedentary Patterns Are Associated With Cognitive Performance in Mobility-Limited Older Adults. / Wanigatunga, Amal A.; Manini, Todd M.; Cook, Delilah R. et al.
In: Frontiers in Aging Neuroscience, Vol. 10, 341, 15.11.2018.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Community-Based Activity and Sedentary Patterns Are Associated With Cognitive Performance in Mobility-Limited Older Adults
AU - Wanigatunga, Amal A.
AU - Manini, Todd M.
AU - Cook, Delilah R.
AU - Katula, Jeffrey
AU - Fielding, Roger A.
AU - Kramer, Arthur F.
AU - Verghese, Joe
AU - Rapp, Stephen R.
AU - Sink, Kaycee M.
AU - King, Abby C.
AU - Buford, Thomas W.
AU - Anton, Steve
AU - Nadkarni, Neelesh
AU - Jennings, Janine M.
AU - Reid, Kieran
AU - Espeland, Mark A.
AU - Gill, Thomas M.
AU - Pahor, Marco
AU - Nocera, Joe R.
N1 - Funding Information: Administrative Coordinating Center, University of Florida, Gainesville, FL, United States: Marco Pahor, MD (Principal Investigator of the LIFE Study); Jack M. Guralnik, MD, PhD (Co-Investigator of the LIFE Study) (University of Maryland School of Medicine, Baltimore, MD, United States); Stephen D. Anton, PhD; Thomas W. Buford, PhD; Christiaan Leeuwenburgh, PhD; Susan G. Nayfield, MD, MSc; Todd M. Manini, PhD; Connie Caudle; Lauren Crump, MPH; Latonia Holmes; Jocelyn Lee, PhD; Ching-ju Lu, MPH. Data Management, Analysis and Quality Control Center, Wake Forest University, Winston Salem, NC, United States: Michael E. Miller, PhD (DMAQC Principal Investigator); Mark A. Espeland, PhD (DMAQC Co-Investigator); Walter T. Ambrosius, PhD; William Applegate, MD; Daniel P. Beavers, PhD, MS; Robert P. Byington, PhD, MPH, FAHA; Delilah Cook, CCRP; Curt D. Furberg, MD, PhD; Lea N. Harvin, BS; Leora Henkin, MPH, Med; John Hepler, MA; Fang-Chi Hsu, PhD; Kathy Joyce; Laura Lovato, MS; Juan Pierce, AB; Wesley Roberson, BSBA; Julia Robertson, BS; Julia Rushing, BSPH, MStat; Scott Rushing, BS; Cynthia L. Stowe, MPM; Michael P. Walkup, MS; Don Hire, BS; W. Jack Rejeski, PhD; Jeffrey A. Katula, PhD, MA; Peter H. Brubaker, PhD; Shannon L. Mihalko, PhD; Janine M. Jennings, PhD. National Institutes of Health, Bethesda, MD, United States: Evan C. Hadley, MD (National Institute on Aging); Sergei Romashkan, MD, PhD (National Institute on Aging); Kushang V. Patel, PhD (National Institute on Aging); Denise Bonds, MD, MPH (National Heart, Lung, and Blood Institute). Field Centers Northwestern University, Chicago, IL, United States: Mary M. McDermott, MD (Field Center Principal Investigator); Bonnie Spring, PhD (Field Center Co-Investigator); Joshua Hauser, MD (Field Center Co-Investigator); Diana Kerwin, MD (Field Center Co-Investigator); Kathryn Domanchuk, BS; Rex Graff, MS; Alvito Rego, MA. Pennington Biomedical Research Center, Baton Rouge, LA, United States: Timothy S. Church, MD, PhD, MPH (Field Center Principal Investigator); Steven N. Blair, PED (University of South Carolina); Valerie H. Myers, PhD; Ron Monce, PA-C; Nathan E. Britt, NP; Melissa Nauta Harris, BS; Ami Parks McGucken, MPA, BS; Ruben Rodarte, MBA, MS, BS; Heidi K. Millet, MPA, BS; Catrine Tudor-Locke, PhD, FACSM; Ben P. Butitta, BS; Sheletta G. Donatto, MS, RD, LDN, CDE; Shannon H. Cocreham, BS. Stanford University, Palo Alto, CA, United States: Abby C. King, PhD (Field Center Principal Investigator); Cynthia M. Castro, PhD; William L. Haskell, PhD; Randall S. Stafford, MD, PhD; Leslie A. Pruitt, PhD; Veronica Yank, MD; Kathy Berra, MSN, NP-C, FAAN; Carol Bell, NP; Rosita M. Thiessen; Kate P. Youngman, MA; Selene B. Virgen, BAS; Eric Maldonado, BA; Kristina N. Tarin, MS, CSCS; Heather Klaftenegger, BS; Carolyn A. Prosak, RD; Ines Campero, BA; Dulce M. Garcia, BS; Jos Soto, BA; Linda Chio, BA; David Hoskins, MS. Tufts University, Boston, MA, United States: Roger A. Fielding, PhD (Field Center Principal Investigator); Miriam E. Nelson, PhD; Sara C. Folta, PhD; Edward M. Phillips, MD; Christine K. Liu, MD; Erica C. McDavitt, MS; Kieran F. Reid, PhD, MPH; Dylan R. Kirn, BS; Evan P. Pasha, BS; Won S. Kim, BS; Julie M. Krol, MS; Vince E. Beard, BS; Eleni X. Tsiroyannis, BS; Cynthia Hau, BS, MPH. University of Florida, Gainesville, FL, United States: Todd M. Manini, PhD (Field Center Principal Investigator); Marco Pahor, MD (Field Center Co-Investigator); Stephen D. Anton, PhD; Thomas W. Buford, PhD; Michael Marsiske, PhD; Susan G. Nayfield, MD, MSc; Bhanuprasad D. Sandesara, MD; Mieniecia L. Black, MS; William L. Burk, MS; Brian M. Hoover, BS; Jeffrey D. Knaggs, BS; William C. Marena, MT, CCRC; Irina Korytov, MD; Stephanie D. Curtis, BS; Megan S. Lorow, BS; Chaitalee S. Goswami; Melissa A. Lewis; Michelle Kamen, BS; Jill N. Bitz; Brian K. Stanton, BS; Tamika T. Hicks, BS; Charles W. Gay, DC; Chonglun Xie, MD (Brooks Rehabilitation Clinical Research Center, Jacksonville, FL, United States); Holly L. Morris, MSN, RN, CCRC (Brooks Rehabilitation Clinical Research Center, Jacksonville, FL, United States); Floris F. Singletary, MS, CCC-SLP (Brooks Rehabilitation Clinical Research Center, Jacksonville, FL, United States); Jackie Causer, BSH, RN (Brooks Rehabilitation Clinical Research Center, Jacksonville, FL, United States); Susan Yonce, ARNP (Brooks Rehabilitation Clinical Research Center, Jacksonville, FL, United States); Katie A. Radcliff, M.A. (Brooks Rehabilitation Clinical Research Center, Jacksonville, FL, United States); Mallorey Picone Smith, BS (Brooks Rehabilitation Clinical Research Center, Jacksonville, FL, United States); Jennifer S. Scott, BS (Brooks Rehabilitation Clinical Research Center, Jacksonville, FL, United States); Melissa M. Rodriguez, BS (Brooks Rehabilitation Clinical Research Center, Jacksonville, FL, United States); Margo S. Fitch, PT (Brooks Rehabilitation Clinical Research Center, Jacksonville, FL, United States); Mendy C. Dunn, BSN (Assessment) (Brooks Rehabilitation Clinical Research Center, Jacksonville, FL, United States); Jessica Q. Schllesinger, BS (Brooks Rehabilitation Clinical Research Center, Jacksonville, FL, United States). University of Pittsburgh, Pittsburgh, PA, United States: Anne B. Newman, MD, MPH (Field Center Principal Investigator); Stephanie A. Studenski, MD, MPH (Field Center Co-Investigator); Bret H. Goodpaster, PhD; Oscar Lopez, MD; Nancy W. Glynn, PhD; Neelesh K. Nadkarni, MD, PhD; Diane G. Ives, MPH; Mark A. Newman, PhD; George Grove, MS; Kathy Williams, RN, BSEd, MHSA; Janet T. Bonk, MPH, RN; Jennifer Rush, MPH; Piera Kost, BA (deceased); Pamela Vincent, CMA; Allison Gerger, BS; Jamie R. Romeo, BS; Lauren C. Monheim, BS. Wake Forest University, Winston Salem, NC, United States: Stephen B. Kritchevsky, PhD (Field Center Principal Investigator); Anthony P. Marsh, PhD (Field Center Co-Principal Investigator); Tina E. Brinkley, PhD; Jamehl S. Demons, MD; Kaycee M. Sink, MD, MAS; Kimberly Kennedy, BA, CCRC; Rachel Shertzer-Skinner, MA, CCRC; Abbie Wrights, MS; Rose Fries, RN, CCRC; Deborah Barr, MA, RHEd, CHES. Yale University, New Haven, CT, United States: Thomas M. Gill, M.D. (Field Center Principal Investigator); Robert S. Axtell, PhD, FACSM (Field Center Co-Principal Investigator) (Southern Connecticut State University, Exercise Science Department); Susan S. Kashaf, MD, MPH (VA Connecticut Healthcare System); Nathalie de Rekeneire, MD, MS; Joanne M. McGloin, MDiv, MS, MBA; Raeleen Mautner, PhD; Sharon M. Huie-White, MPH; Luann Bianco, BA; Janice Zocher; Karen C. Wu, RN; Denise M. Shepard, RN, MBA; Barbara Fennelly, MA, RN; Rina Castro, LPN; Sean Halpin, MA; Matthew Brennan, MA; Theresa Barnett, MS, APRN; Lynne P. Iannone, MS, CCRP; Maria A. Zenoni, MS; Julie A. Bugaj, MS; Christine Bailey, MA; Peter Charpentier, MPH; Geraldine Hawthorne-Jones; Bridget Mignosa; Lynn Lewis. Cognition Coordinating Center, Wake Forest University, Winston Salem, NC, United States: Jeff Williamson, MD, MHS (Center Principal Investigator); Kaycee M. Sink, MD, MAS (Center Co-Principal Investigator); Hugh C. Hendrie, MB, ChB, DSc (Indiana University); Stephen R. Rapp, PhD; Joe Verghese, MB, BS (Albert Einstein College of Medicine of Yeshiva University); Nancy Woolard; Mark Espeland, PhD; Janine Jennings, PhD; Valerie K. Wilson, MD. Electrocardiogram Reading Center, University of Florida, Gainesville, FL, United States: Carl J. Pepine MD, MACC; Mario Ariet, PhD; Eileen Handberg, PhD, ARNP; Daniel Deluca, BS; James Hill, MD, MS, FACC; Anita Szady, MD. Spirometry Reading Center, Yale University, New Haven, CT, United States: Geoffrey L. Chupp, MD; Gail M. Flynn, RCP, CRFT; Thomas M. Gill, MD; John L. Hankinson, PhD (Hankinson Consulting, Inc.); Carlos A. Vaz Fragoso, MD. Cost Effectiveness Analysis Center: Erik J. Groessl, PhD (University of California, San Diego and VA San Diego Healthcare System); Robert M. Kaplan, PhD (Office of Behavioral and Social Sciences Research, National Institutes of Health). Funding. The LIFE was funded by a National Institutes of Health/National Institute on Aging Cooperative Agreement No. U01AG22376 and a supplement from the National Heart, Lung and Blood Institute U01AG022376-05A2S, and sponsored in part by the Intramural Research Program, National Institute on Aging, National Institutes of Health. Dr. AW (Johns Hopkins University) was currently supported by T32AG000247 and P30AG021334. Dr. TM (University of Florida) was supported by R01AG042525 and R01HL121023. The research was partially supported by the Rehabilitation Research & Development Service of the VA (B7676P) and by the Claude D. Pepper Older Americans Independence Centers at the University of Florida (P30AG028740), Tufts University (P30AG031679), University of Pittsburgh (P30AG024827), and Yale University (P30AG021342) and the NIH/NCRR CTSA at Stanford University (UL1RR025744). Dr. TG (Yale University) was the recipient of an Academic Leadership Award (K07AG3587) from the National Institute on Aging. Dr. RF?s contribution was partially supported by the United States Department of Agriculture, under agreement No. 58-1950-0-014. This research was also supported by the Boston Rehabilitation Outcomes Center (1R24HD065688-01A1) and the Wake Forest University Field Center was, in part, supported by the Claude D. Pepper Older Americans Independence Center (1 P30 AG21332). Dr. Fragoso was the recipient of a Career Development Award from the Department of Veterans Affairs. Publisher Copyright: © Copyright © 2018 Wanigatunga, Manini, Cook, Katula, Fielding, Kramer, Verghese, Rapp, Sink, King, Buford, Anton, Nadkarni, Jennings, Reid, Espeland, Gill, Pahor and Nocera.
PY - 2018/11/15
Y1 - 2018/11/15
N2 - Over the last few decades, considerable evidence shows that greater levels of aerobic exercise and cardiovascular fitness benefit cognitive performance. However, the degree to which free-living activity in community settings is related to cognitive performance remains unclear, particularly in older adults vulnerable to disability. Also, it is unknown whether the manner in which daily physical activity (PA) and sedentary time are accumulated throughout the day is associated with cognition. Cross-sectional associations between accelerometer-characterized PA and sedentary patterns and cognitive performance were examined in 1,274 mobility-limited older adults. Percent time spent in various bout lengths of PA (≥1, ≥2, and ≥5 min) and sedentary (≥1, ≥30, and ≥60 min) was defined as the number of minutes registered divided by total wear time × 100. Percent time was then tertiled for each bout length. Multiple linear regression models were used to estimate the associations between accelerometer bout variables and separate cognitive domains that included processing speed (Digit Symbol Coding; DSC), immediate and delayed recall (Hopkins Verbal Learning Test; HVLT), information processing and selective attention (Flanker), working memory (n-back), reaction time (switch and non-switch reaction time), and a composite score that averaged results from all cognitive tests. After adjusting for demographics, behavioral factors, and morbid conditions, more time spent in PA was associated with higher DSC for all bout lengths (p < 0.03 for all). Higher PA was associated with higher HVLT and global cognition scores but only for longer bout lengths (p < 0.05 for all). The association was largely driven by participants who spent the lowest amount of time performing activity while awake (p < 0.04). An inverse linear relationship was observed between total sedentary time and DSC (p = 0.02), but not for other measures of cognition. These results suggest that, while higher PA was associated with higher cognitive performance, PA’s association with memory was sensitive to bout duration. The time, but not the manner, spent in sedentary behaviors showed a minor association with executive function. Further research is warranted to characterize longitudinal changes in daily activity and sedentary patterns as potential biophysical markers of cognitive status in older adults.
AB - Over the last few decades, considerable evidence shows that greater levels of aerobic exercise and cardiovascular fitness benefit cognitive performance. However, the degree to which free-living activity in community settings is related to cognitive performance remains unclear, particularly in older adults vulnerable to disability. Also, it is unknown whether the manner in which daily physical activity (PA) and sedentary time are accumulated throughout the day is associated with cognition. Cross-sectional associations between accelerometer-characterized PA and sedentary patterns and cognitive performance were examined in 1,274 mobility-limited older adults. Percent time spent in various bout lengths of PA (≥1, ≥2, and ≥5 min) and sedentary (≥1, ≥30, and ≥60 min) was defined as the number of minutes registered divided by total wear time × 100. Percent time was then tertiled for each bout length. Multiple linear regression models were used to estimate the associations between accelerometer bout variables and separate cognitive domains that included processing speed (Digit Symbol Coding; DSC), immediate and delayed recall (Hopkins Verbal Learning Test; HVLT), information processing and selective attention (Flanker), working memory (n-back), reaction time (switch and non-switch reaction time), and a composite score that averaged results from all cognitive tests. After adjusting for demographics, behavioral factors, and morbid conditions, more time spent in PA was associated with higher DSC for all bout lengths (p < 0.03 for all). Higher PA was associated with higher HVLT and global cognition scores but only for longer bout lengths (p < 0.05 for all). The association was largely driven by participants who spent the lowest amount of time performing activity while awake (p < 0.04). An inverse linear relationship was observed between total sedentary time and DSC (p = 0.02), but not for other measures of cognition. These results suggest that, while higher PA was associated with higher cognitive performance, PA’s association with memory was sensitive to bout duration. The time, but not the manner, spent in sedentary behaviors showed a minor association with executive function. Further research is warranted to characterize longitudinal changes in daily activity and sedentary patterns as potential biophysical markers of cognitive status in older adults.
KW - accelerometer
KW - aging
KW - cognition
KW - executive function
KW - physical inactivity
KW - wearables
UR - http://www.scopus.com/inward/record.url?scp=85067822049&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85067822049&partnerID=8YFLogxK
U2 - 10.3389/fnagi.2018.00341
DO - 10.3389/fnagi.2018.00341
M3 - Article
AN - SCOPUS:85067822049
VL - 10
JO - Frontiers in Aging Neuroscience
JF - Frontiers in Aging Neuroscience
SN - 1663-4365
M1 - 341
ER -