Abstract
Behavioral tests are widely used to quantify features of cognitive processing. For a large class of behavioral signals, the observed variables are non-Gaussian and dynamic; classical estimation algorithms are ill-suited to modeling such data. In this research, we propose a mathematical framework to predict a cognitive state variable related to behavioral signals, which are best modeled using a Gamma distribution. The proposed algorithm combines a Gamma Smoother and EM algorithm in the prediction process. The algorithm is applied to reaction time recorded from subjects performing a Multi-Source Interference Task (MSIT) to dynamically quantify their cognitive flexibility through the course of the experiment.
Original language | English (US) |
---|---|
Title of host publication | 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 7819-7824 |
Number of pages | 6 |
Volume | 2015-November |
ISBN (Electronic) | 9781424492718 |
DOIs | |
State | Published - Nov 4 2015 |
Externally published | Yes |
Event | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy Duration: Aug 25 2015 → Aug 29 2015 |
Other
Other | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 |
---|---|
Country/Territory | Italy |
City | Milan |
Period | 8/25/15 → 8/29/15 |
ASJC Scopus subject areas
- Signal Processing
- Biomedical Engineering
- Computer Vision and Pattern Recognition
- Health Informatics