Cloning of the human kidney PAH transporter

Narrow substrate specificity and regulation by protein kinase C

Run Lu, Brenda S. Chan, Victor L. Schuster

Research output: Contribution to journalArticle

158 Citations (Scopus)

Abstract

Conserved from fish to mammals, renal proximal tubule organic anion secretion plays an important role in drug and xenobiotic elimination. Studies with the model substrate p-aminohippurate (PAH) have suggested that a basolateral PAH/α-ketoglutarate exchanger imports diverse organic substrates into the proximal tubule prior to apical secretion. cDNAs encoding PAH transporters have been cloned recently from rat and flounder. Here we report the cloning of a highly similar human PAH transporter (hPAHT) from human kidney. By Northern blot analysis and EST database searching, hPAHT mRNA was detected in kidney and brain. PCR-based monochromosomal somatic cell hybrid mapping placed the hPAHT gene on chromosome 11. When expressed transiently in vitro, hPAHT catalyzed time-dependent and saturable [3H]PAH uptake (K(m) of ~5 μM). Preincubation with unlabeled α-ketoglutaric or with glutaric acid stimulated tracer PAH uptake, and preincubation with unlabeled PAH stimulated tracer α-ketoglutarate uptake, results that are consistent with PAH/α- ketoglutarate exchange. Several structurally diverse organic anions cis- inhibited PAH uptake. Like rat OAT1 organic anion transporter, hPAHT was inhibited by furosemide, indomethacin, probenecid, and α-ketoglutarate. Unlike OAT1, hPAHT was not inhibited by prostaglandins or methotrexate (MTX). Moreover, tracer PGE2 and MTX were not transported, indicating that the substrate specificity for transport by hPAHT is not broad. PAH uptake was inhibited by phorbol 12-myristate 13-acetate (PMA) in a dose- and time- dependent fashion, but not by the inactive 4α-phorbol-12,13 didecanoate. PMA-induced inhibition was blocked by staurosporine. Thus the protein kinase C-mediated inhibition of basolateral organic anion entry previously reported in intact tubules is likely due, at least in part, to direct modulation of the PAH/α-ketoglutarate exchanger.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Renal Physiology
Volume276
Issue number2 45-2
StatePublished - Feb 1999

Fingerprint

Organic Anion Transport Protein 1
p-Aminohippuric Acid
Substrate Specificity
Protein Kinase C
Organism Cloning
Kidney
Anions
Methotrexate
Acetates
Organic Anion Transporters
Flounder
Probenecid
Proximal Kidney Tubule
Chromosomes, Human, Pair 11
Staurosporine
Hybrid Cells
Expressed Sequence Tags
Furosemide
Xenobiotics
Dinoprostone

Keywords

  • Biological transport
  • Carrier proteins
  • Hormonal control
  • Organic anion transport
  • p-aminohippurate
  • Phorbol ester
  • Renal secretion

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this

@article{c9d0eadb088e4e589aecbd12f994407c,
title = "Cloning of the human kidney PAH transporter: Narrow substrate specificity and regulation by protein kinase C",
abstract = "Conserved from fish to mammals, renal proximal tubule organic anion secretion plays an important role in drug and xenobiotic elimination. Studies with the model substrate p-aminohippurate (PAH) have suggested that a basolateral PAH/α-ketoglutarate exchanger imports diverse organic substrates into the proximal tubule prior to apical secretion. cDNAs encoding PAH transporters have been cloned recently from rat and flounder. Here we report the cloning of a highly similar human PAH transporter (hPAHT) from human kidney. By Northern blot analysis and EST database searching, hPAHT mRNA was detected in kidney and brain. PCR-based monochromosomal somatic cell hybrid mapping placed the hPAHT gene on chromosome 11. When expressed transiently in vitro, hPAHT catalyzed time-dependent and saturable [3H]PAH uptake (K(m) of ~5 μM). Preincubation with unlabeled α-ketoglutaric or with glutaric acid stimulated tracer PAH uptake, and preincubation with unlabeled PAH stimulated tracer α-ketoglutarate uptake, results that are consistent with PAH/α- ketoglutarate exchange. Several structurally diverse organic anions cis- inhibited PAH uptake. Like rat OAT1 organic anion transporter, hPAHT was inhibited by furosemide, indomethacin, probenecid, and α-ketoglutarate. Unlike OAT1, hPAHT was not inhibited by prostaglandins or methotrexate (MTX). Moreover, tracer PGE2 and MTX were not transported, indicating that the substrate specificity for transport by hPAHT is not broad. PAH uptake was inhibited by phorbol 12-myristate 13-acetate (PMA) in a dose- and time- dependent fashion, but not by the inactive 4α-phorbol-12,13 didecanoate. PMA-induced inhibition was blocked by staurosporine. Thus the protein kinase C-mediated inhibition of basolateral organic anion entry previously reported in intact tubules is likely due, at least in part, to direct modulation of the PAH/α-ketoglutarate exchanger.",
keywords = "Biological transport, Carrier proteins, Hormonal control, Organic anion transport, p-aminohippurate, Phorbol ester, Renal secretion",
author = "Run Lu and Chan, {Brenda S.} and Schuster, {Victor L.}",
year = "1999",
month = "2",
language = "English (US)",
volume = "276",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "2 45-2",

}

TY - JOUR

T1 - Cloning of the human kidney PAH transporter

T2 - Narrow substrate specificity and regulation by protein kinase C

AU - Lu, Run

AU - Chan, Brenda S.

AU - Schuster, Victor L.

PY - 1999/2

Y1 - 1999/2

N2 - Conserved from fish to mammals, renal proximal tubule organic anion secretion plays an important role in drug and xenobiotic elimination. Studies with the model substrate p-aminohippurate (PAH) have suggested that a basolateral PAH/α-ketoglutarate exchanger imports diverse organic substrates into the proximal tubule prior to apical secretion. cDNAs encoding PAH transporters have been cloned recently from rat and flounder. Here we report the cloning of a highly similar human PAH transporter (hPAHT) from human kidney. By Northern blot analysis and EST database searching, hPAHT mRNA was detected in kidney and brain. PCR-based monochromosomal somatic cell hybrid mapping placed the hPAHT gene on chromosome 11. When expressed transiently in vitro, hPAHT catalyzed time-dependent and saturable [3H]PAH uptake (K(m) of ~5 μM). Preincubation with unlabeled α-ketoglutaric or with glutaric acid stimulated tracer PAH uptake, and preincubation with unlabeled PAH stimulated tracer α-ketoglutarate uptake, results that are consistent with PAH/α- ketoglutarate exchange. Several structurally diverse organic anions cis- inhibited PAH uptake. Like rat OAT1 organic anion transporter, hPAHT was inhibited by furosemide, indomethacin, probenecid, and α-ketoglutarate. Unlike OAT1, hPAHT was not inhibited by prostaglandins or methotrexate (MTX). Moreover, tracer PGE2 and MTX were not transported, indicating that the substrate specificity for transport by hPAHT is not broad. PAH uptake was inhibited by phorbol 12-myristate 13-acetate (PMA) in a dose- and time- dependent fashion, but not by the inactive 4α-phorbol-12,13 didecanoate. PMA-induced inhibition was blocked by staurosporine. Thus the protein kinase C-mediated inhibition of basolateral organic anion entry previously reported in intact tubules is likely due, at least in part, to direct modulation of the PAH/α-ketoglutarate exchanger.

AB - Conserved from fish to mammals, renal proximal tubule organic anion secretion plays an important role in drug and xenobiotic elimination. Studies with the model substrate p-aminohippurate (PAH) have suggested that a basolateral PAH/α-ketoglutarate exchanger imports diverse organic substrates into the proximal tubule prior to apical secretion. cDNAs encoding PAH transporters have been cloned recently from rat and flounder. Here we report the cloning of a highly similar human PAH transporter (hPAHT) from human kidney. By Northern blot analysis and EST database searching, hPAHT mRNA was detected in kidney and brain. PCR-based monochromosomal somatic cell hybrid mapping placed the hPAHT gene on chromosome 11. When expressed transiently in vitro, hPAHT catalyzed time-dependent and saturable [3H]PAH uptake (K(m) of ~5 μM). Preincubation with unlabeled α-ketoglutaric or with glutaric acid stimulated tracer PAH uptake, and preincubation with unlabeled PAH stimulated tracer α-ketoglutarate uptake, results that are consistent with PAH/α- ketoglutarate exchange. Several structurally diverse organic anions cis- inhibited PAH uptake. Like rat OAT1 organic anion transporter, hPAHT was inhibited by furosemide, indomethacin, probenecid, and α-ketoglutarate. Unlike OAT1, hPAHT was not inhibited by prostaglandins or methotrexate (MTX). Moreover, tracer PGE2 and MTX were not transported, indicating that the substrate specificity for transport by hPAHT is not broad. PAH uptake was inhibited by phorbol 12-myristate 13-acetate (PMA) in a dose- and time- dependent fashion, but not by the inactive 4α-phorbol-12,13 didecanoate. PMA-induced inhibition was blocked by staurosporine. Thus the protein kinase C-mediated inhibition of basolateral organic anion entry previously reported in intact tubules is likely due, at least in part, to direct modulation of the PAH/α-ketoglutarate exchanger.

KW - Biological transport

KW - Carrier proteins

KW - Hormonal control

KW - Organic anion transport

KW - p-aminohippurate

KW - Phorbol ester

KW - Renal secretion

UR - http://www.scopus.com/inward/record.url?scp=0032995116&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032995116&partnerID=8YFLogxK

M3 - Article

VL - 276

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 2 45-2

ER -