Characteristics of the paracellular pathway of rabbit cortical collecting duct

D. H. Warden, Victor L. Schuster, J. B. Stokes

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

The nature of the paracellular pathway of the rabbit cortical collecting duct (CCD) was examined under conditions designed to eliminate all cellular ion transport. Transcellular conductive pathways were blocked by addition of amiloride and Ba2+ to the perfusate. Cl self-exchange was eliminated by removing Cl mfrom the bath solution, and HCO3 transport was eliminated by omitting HCO3 and CO2 from the solutions. The residual transepithelial conductance (G(T)) and the radioisotopic tracer flux under these conditions probably occur via the paracellular pathway. The G(T) measured in nontransporting CCD bathed in NaCl solutions was 1.1-1.2 mS/cm2. When Na or Cl was replaced by a less mobile ion, the G(T) decreased by an amount commensurate with the decrease in solution conductivity. The Na-to-Cl permeablity ratio determined by NaCl dilution voltages ranged from 0.55 go 0.82. An independent estimate of paracellular selectivity was obtained for comparing the lumen-to-bath tracer rate coefficients for Na (κ(Na)) and Cl (κ(Cl)). The ration κ(Na):κ(Cl) was 0.75. These observations suggest that the paracellular pathway displays a Na:Cl permselectivity not substantially different from the ratio of their mobolities in water (0.65). Additional experiments demonstrated that the summed partial ionic conductances of Na and Cl calculated from the tracer fluxes were in close agreement with the measured G(T). We conclude hat the paracellular conductance of CCD is nonselective in character and ~1-2 mS/cm2 in magnitude.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Renal Fluid and Electrolyte Physiology
Volume255
Issue number4
StatePublished - 1988
Externally publishedYes

Fingerprint

Rabbits
Baths
Transcytosis
Amiloride
Ion Transport
Ions
Water

ASJC Scopus subject areas

  • Physiology

Cite this

@article{74ed1a6b25a246d4a478172359992d38,
title = "Characteristics of the paracellular pathway of rabbit cortical collecting duct",
abstract = "The nature of the paracellular pathway of the rabbit cortical collecting duct (CCD) was examined under conditions designed to eliminate all cellular ion transport. Transcellular conductive pathways were blocked by addition of amiloride and Ba2+ to the perfusate. Cl self-exchange was eliminated by removing Cl mfrom the bath solution, and HCO3 transport was eliminated by omitting HCO3 and CO2 from the solutions. The residual transepithelial conductance (G(T)) and the radioisotopic tracer flux under these conditions probably occur via the paracellular pathway. The G(T) measured in nontransporting CCD bathed in NaCl solutions was 1.1-1.2 mS/cm2. When Na or Cl was replaced by a less mobile ion, the G(T) decreased by an amount commensurate with the decrease in solution conductivity. The Na-to-Cl permeablity ratio determined by NaCl dilution voltages ranged from 0.55 go 0.82. An independent estimate of paracellular selectivity was obtained for comparing the lumen-to-bath tracer rate coefficients for Na (κ(Na)) and Cl (κ(Cl)). The ration κ(Na):κ(Cl) was 0.75. These observations suggest that the paracellular pathway displays a Na:Cl permselectivity not substantially different from the ratio of their mobolities in water (0.65). Additional experiments demonstrated that the summed partial ionic conductances of Na and Cl calculated from the tracer fluxes were in close agreement with the measured G(T). We conclude hat the paracellular conductance of CCD is nonselective in character and ~1-2 mS/cm2 in magnitude.",
author = "Warden, {D. H.} and Schuster, {Victor L.} and Stokes, {J. B.}",
year = "1988",
language = "English (US)",
volume = "255",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Characteristics of the paracellular pathway of rabbit cortical collecting duct

AU - Warden, D. H.

AU - Schuster, Victor L.

AU - Stokes, J. B.

PY - 1988

Y1 - 1988

N2 - The nature of the paracellular pathway of the rabbit cortical collecting duct (CCD) was examined under conditions designed to eliminate all cellular ion transport. Transcellular conductive pathways were blocked by addition of amiloride and Ba2+ to the perfusate. Cl self-exchange was eliminated by removing Cl mfrom the bath solution, and HCO3 transport was eliminated by omitting HCO3 and CO2 from the solutions. The residual transepithelial conductance (G(T)) and the radioisotopic tracer flux under these conditions probably occur via the paracellular pathway. The G(T) measured in nontransporting CCD bathed in NaCl solutions was 1.1-1.2 mS/cm2. When Na or Cl was replaced by a less mobile ion, the G(T) decreased by an amount commensurate with the decrease in solution conductivity. The Na-to-Cl permeablity ratio determined by NaCl dilution voltages ranged from 0.55 go 0.82. An independent estimate of paracellular selectivity was obtained for comparing the lumen-to-bath tracer rate coefficients for Na (κ(Na)) and Cl (κ(Cl)). The ration κ(Na):κ(Cl) was 0.75. These observations suggest that the paracellular pathway displays a Na:Cl permselectivity not substantially different from the ratio of their mobolities in water (0.65). Additional experiments demonstrated that the summed partial ionic conductances of Na and Cl calculated from the tracer fluxes were in close agreement with the measured G(T). We conclude hat the paracellular conductance of CCD is nonselective in character and ~1-2 mS/cm2 in magnitude.

AB - The nature of the paracellular pathway of the rabbit cortical collecting duct (CCD) was examined under conditions designed to eliminate all cellular ion transport. Transcellular conductive pathways were blocked by addition of amiloride and Ba2+ to the perfusate. Cl self-exchange was eliminated by removing Cl mfrom the bath solution, and HCO3 transport was eliminated by omitting HCO3 and CO2 from the solutions. The residual transepithelial conductance (G(T)) and the radioisotopic tracer flux under these conditions probably occur via the paracellular pathway. The G(T) measured in nontransporting CCD bathed in NaCl solutions was 1.1-1.2 mS/cm2. When Na or Cl was replaced by a less mobile ion, the G(T) decreased by an amount commensurate with the decrease in solution conductivity. The Na-to-Cl permeablity ratio determined by NaCl dilution voltages ranged from 0.55 go 0.82. An independent estimate of paracellular selectivity was obtained for comparing the lumen-to-bath tracer rate coefficients for Na (κ(Na)) and Cl (κ(Cl)). The ration κ(Na):κ(Cl) was 0.75. These observations suggest that the paracellular pathway displays a Na:Cl permselectivity not substantially different from the ratio of their mobolities in water (0.65). Additional experiments demonstrated that the summed partial ionic conductances of Na and Cl calculated from the tracer fluxes were in close agreement with the measured G(T). We conclude hat the paracellular conductance of CCD is nonselective in character and ~1-2 mS/cm2 in magnitude.

UR - http://www.scopus.com/inward/record.url?scp=0023809445&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023809445&partnerID=8YFLogxK

M3 - Article

VL - 255

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 4

ER -