Cell fate determination factor DACH1 inhibits c-Jun-induced contact-independent growth

Kongming Wu, Manran Liu, Anping Li, Howard Donninger, Mahadev Rao, Xuanmao Jiao, Michael P. Lisanti, Ales Cvekl, Michael Birrer, Richard G. Pestell

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

The cell fate determination factor DACH1 plays a key role in cellular differentiation in metazoans. DACH1 is engaged in multiple context-dependent complexes that activate or repress transcription. DACH1 can be recruited to DNA via the Six1/Eya bipartite transcription (DNA binding/coactivator) complex. c-Jun is a critical component of the activator protein (AP)-1 transcription factor complex and can promote contact-independent growth. Herein, DACH1 inhibited c-Jun-induced DNA synthesis and cellular proliferation. Excision of c-Jun with Cre recombinase, in c-junf1/f1 3T3 cells, abrogated DACH1-mediated inhibition of DNA synthesis. c-Jun expression rescued DACH1-mediated inhibition of cellular proliferation. DACH1 inhibited induction of c-Jun by physiological stimuli and repressed c-jun target genes (cyclin A, β-PAK, and stathmin). DACH1 bound c-Jun and inhibited AP-1 transcriptional activity, c-jun and c-fos were transcriptionally repressed by DACH1, requiring the conserved N-terminal (dac and ski/sno [DS]) domain. c-fos transcriptional repression by DACH1 requires the SRF site of the c-fos promoter. DACH1 inhibited c-Jun transactivation through the δ domain of c-Jun. DACH1 coprecipitated the histone deacetylase proteins (HDAC1, HDAC2, and NCoR), providing a mechanism by which DACH1 represses c-Jun activity through the conserved δ domain. An oncogenic v-Jun deleted of the δ domain was resistant to DACH1 repression. Collectively, these studies demonstrate a novel mechanism by which DACH1 blocks c-Jun-mediated contact-independent growth through repressing the c-Jun δ domain.

Original languageEnglish (US)
Pages (from-to)755-767
Number of pages13
JournalMolecular biology of the cell
Volume18
Issue number3
DOIs
StatePublished - Mar 2007

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Cell fate determination factor DACH1 inhibits c-Jun-induced contact-independent growth'. Together they form a unique fingerprint.

Cite this