Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes

Mathieu Dubé, Loïc Etienne, Maximilian Fels, Margaret Kielian

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The E1 membrane protein of rubella virus (RuV) is a class II membrane fusion protein structurally related to the fusion proteins of the alphaviruses, flaviviruses, and phleboviruses. Virus entry is mediated by a low pH-dependent fusion reaction through E1's insertion into the cell membrane and refolding to a stable homotrimer. Unlike the other described class II proteins, RuV E1 contains 2 fusion loops, which complex a metal ion between them by interactions with residues N88 and D136. Insertion of the E1 protein into the target membrane, fusion, and infection require calcium and are blocked by alanine substitution of N88 or D136. Here we addressed the requirements of E1 for calcium binding and the intracellular location of the calcium requirement during virus entry. Our results demonstrated that N88 and D136 are optimally configured to support RuV fusion and are strongly selected for during the virus life cycle. While E1 has some similarities with cellular proteins that bind calcium and anionic lipids, RuV binding to the membrane was independent of anionic lipids. Virus fusion occurred within early endosomes, and chelation of intracellular calcium showed that calcium within the early endosome was required for virus fusion and infection. Calcium triggered the reversible insertion of E1 into the target membrane at neutral pH, but E1 homotrimer formation and fusion required a low pH. Thus, RuV E1, unlike other known class II fusion proteins, has distinct triggers for membrane insertion and fusion protein refolding mediated, respectively, by endosomal calcium and low pH.

Original languageEnglish (US)
Pages (from-to)6303-6313
Number of pages11
JournalJournal of Virology
Volume90
Issue number14
DOIs
StatePublished - 2016

Fingerprint

Rubella virus
endosomes
Endosomes
Calcium
calcium
viruses
Membrane Fusion Proteins
Virus Internalization
proteins
Proteins
Phlebovirus
Flaviviridae
Protein Refolding
Alphavirus
Viruses
Lipids
Virus Attachment
Flavivirus
Membrane Fusion
Membranes

ASJC Scopus subject areas

  • Immunology
  • Virology

Cite this

Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes. / Dubé, Mathieu; Etienne, Loïc; Fels, Maximilian; Kielian, Margaret.

In: Journal of Virology, Vol. 90, No. 14, 2016, p. 6303-6313.

Research output: Contribution to journalArticle

Dubé, Mathieu ; Etienne, Loïc ; Fels, Maximilian ; Kielian, Margaret. / Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes. In: Journal of Virology. 2016 ; Vol. 90, No. 14. pp. 6303-6313.
@article{8b401273486348e0917dff1751a55f0e,
title = "Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes",
abstract = "The E1 membrane protein of rubella virus (RuV) is a class II membrane fusion protein structurally related to the fusion proteins of the alphaviruses, flaviviruses, and phleboviruses. Virus entry is mediated by a low pH-dependent fusion reaction through E1's insertion into the cell membrane and refolding to a stable homotrimer. Unlike the other described class II proteins, RuV E1 contains 2 fusion loops, which complex a metal ion between them by interactions with residues N88 and D136. Insertion of the E1 protein into the target membrane, fusion, and infection require calcium and are blocked by alanine substitution of N88 or D136. Here we addressed the requirements of E1 for calcium binding and the intracellular location of the calcium requirement during virus entry. Our results demonstrated that N88 and D136 are optimally configured to support RuV fusion and are strongly selected for during the virus life cycle. While E1 has some similarities with cellular proteins that bind calcium and anionic lipids, RuV binding to the membrane was independent of anionic lipids. Virus fusion occurred within early endosomes, and chelation of intracellular calcium showed that calcium within the early endosome was required for virus fusion and infection. Calcium triggered the reversible insertion of E1 into the target membrane at neutral pH, but E1 homotrimer formation and fusion required a low pH. Thus, RuV E1, unlike other known class II fusion proteins, has distinct triggers for membrane insertion and fusion protein refolding mediated, respectively, by endosomal calcium and low pH.",
author = "Mathieu Dub{\'e} and Lo{\"i}c Etienne and Maximilian Fels and Margaret Kielian",
year = "2016",
doi = "10.1128/JVI.00634-16",
language = "English (US)",
volume = "90",
pages = "6303--6313",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "14",

}

TY - JOUR

T1 - Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes

AU - Dubé, Mathieu

AU - Etienne, Loïc

AU - Fels, Maximilian

AU - Kielian, Margaret

PY - 2016

Y1 - 2016

N2 - The E1 membrane protein of rubella virus (RuV) is a class II membrane fusion protein structurally related to the fusion proteins of the alphaviruses, flaviviruses, and phleboviruses. Virus entry is mediated by a low pH-dependent fusion reaction through E1's insertion into the cell membrane and refolding to a stable homotrimer. Unlike the other described class II proteins, RuV E1 contains 2 fusion loops, which complex a metal ion between them by interactions with residues N88 and D136. Insertion of the E1 protein into the target membrane, fusion, and infection require calcium and are blocked by alanine substitution of N88 or D136. Here we addressed the requirements of E1 for calcium binding and the intracellular location of the calcium requirement during virus entry. Our results demonstrated that N88 and D136 are optimally configured to support RuV fusion and are strongly selected for during the virus life cycle. While E1 has some similarities with cellular proteins that bind calcium and anionic lipids, RuV binding to the membrane was independent of anionic lipids. Virus fusion occurred within early endosomes, and chelation of intracellular calcium showed that calcium within the early endosome was required for virus fusion and infection. Calcium triggered the reversible insertion of E1 into the target membrane at neutral pH, but E1 homotrimer formation and fusion required a low pH. Thus, RuV E1, unlike other known class II fusion proteins, has distinct triggers for membrane insertion and fusion protein refolding mediated, respectively, by endosomal calcium and low pH.

AB - The E1 membrane protein of rubella virus (RuV) is a class II membrane fusion protein structurally related to the fusion proteins of the alphaviruses, flaviviruses, and phleboviruses. Virus entry is mediated by a low pH-dependent fusion reaction through E1's insertion into the cell membrane and refolding to a stable homotrimer. Unlike the other described class II proteins, RuV E1 contains 2 fusion loops, which complex a metal ion between them by interactions with residues N88 and D136. Insertion of the E1 protein into the target membrane, fusion, and infection require calcium and are blocked by alanine substitution of N88 or D136. Here we addressed the requirements of E1 for calcium binding and the intracellular location of the calcium requirement during virus entry. Our results demonstrated that N88 and D136 are optimally configured to support RuV fusion and are strongly selected for during the virus life cycle. While E1 has some similarities with cellular proteins that bind calcium and anionic lipids, RuV binding to the membrane was independent of anionic lipids. Virus fusion occurred within early endosomes, and chelation of intracellular calcium showed that calcium within the early endosome was required for virus fusion and infection. Calcium triggered the reversible insertion of E1 into the target membrane at neutral pH, but E1 homotrimer formation and fusion required a low pH. Thus, RuV E1, unlike other known class II fusion proteins, has distinct triggers for membrane insertion and fusion protein refolding mediated, respectively, by endosomal calcium and low pH.

UR - http://www.scopus.com/inward/record.url?scp=84977553601&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84977553601&partnerID=8YFLogxK

U2 - 10.1128/JVI.00634-16

DO - 10.1128/JVI.00634-16

M3 - Article

C2 - 27122589

AN - SCOPUS:84977553601

VL - 90

SP - 6303

EP - 6313

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 14

ER -