Calcium- and pH-dependent aggregation of carboxypeptidase E

Research output: Contribution to journalArticle

54 Citations (Scopus)

Abstract

Carboxypeptidase E (CPE) is involved with the biosynthesis of numerous peptide hormones and neurotransmitters. Several forms of CPE have been previously detected in neuroendocrine cells, including a form which is soluble at pH 5.5 (S-CPE), a form which can be extracted from membranes with 1 M NaCl at pH 5.5 (M1-CPE), and a form which requires both 1% Triton X-100 and 1 M NaCl for extraction from membranes at pH 5.5 (M2-CPE). Like other peptide processing enzymes, CPE is known to be sorted into peptide- containing secretory vesicles of the regulated pathway. One mechanism that has been proposed to be important for sorting of regulated pathway proteins is Ca2+ and pH-induced aggregation. CPE purified from bovine pituitary membranes aggregates at pH 5.5 when the concentration of CPE is 0.3 μg/μl or higher, but not when the concentration is 0.01 μg/μl. Aggregation of CPE is pH-dependent, with very little aggregation occurring at pH 6 or above. At pH 5.0-5.5, the M2 form of CPE shows a greater tendency to aggregate than the other two forms. At pH 6, Ca2+ concentrations from 1-30 mM increase the aggregation of M1- and M2-CPE, but not S-CPE. The aggregation of M2-CPE does not explain the apparent membrane binding of this protein since the aggregate is solubilized by 1% Triton X-100 at pH 5.5 or by pH 6.0, whereas M2-CPE is not extracted from membranes under these conditions. Taken together, these results are consistent with a model in which the decreasing pH and increasing Ca2+ levels in the trans Golgi network induce the aggregation of CPE, which contributes to the sorting of this protein into regulated pathway secretory vesicles.

Original languageEnglish (US)
Pages (from-to)7963-7967
Number of pages5
JournalJournal of Biological Chemistry
Volume270
Issue number14
DOIs
StatePublished - 1995

Fingerprint

Carboxypeptidase H
Agglomeration
Calcium
Membranes
Octoxynol
Secretory Vesicles
Sorting
trans-Golgi Network
Neuroendocrine Cells
Peptides

ASJC Scopus subject areas

  • Biochemistry

Cite this

Calcium- and pH-dependent aggregation of carboxypeptidase E. / Song, L.; Fricker, Lloyd D.

In: Journal of Biological Chemistry, Vol. 270, No. 14, 1995, p. 7963-7967.

Research output: Contribution to journalArticle

@article{b42334e984fd493781dfbbf5723103e4,
title = "Calcium- and pH-dependent aggregation of carboxypeptidase E",
abstract = "Carboxypeptidase E (CPE) is involved with the biosynthesis of numerous peptide hormones and neurotransmitters. Several forms of CPE have been previously detected in neuroendocrine cells, including a form which is soluble at pH 5.5 (S-CPE), a form which can be extracted from membranes with 1 M NaCl at pH 5.5 (M1-CPE), and a form which requires both 1{\%} Triton X-100 and 1 M NaCl for extraction from membranes at pH 5.5 (M2-CPE). Like other peptide processing enzymes, CPE is known to be sorted into peptide- containing secretory vesicles of the regulated pathway. One mechanism that has been proposed to be important for sorting of regulated pathway proteins is Ca2+ and pH-induced aggregation. CPE purified from bovine pituitary membranes aggregates at pH 5.5 when the concentration of CPE is 0.3 μg/μl or higher, but not when the concentration is 0.01 μg/μl. Aggregation of CPE is pH-dependent, with very little aggregation occurring at pH 6 or above. At pH 5.0-5.5, the M2 form of CPE shows a greater tendency to aggregate than the other two forms. At pH 6, Ca2+ concentrations from 1-30 mM increase the aggregation of M1- and M2-CPE, but not S-CPE. The aggregation of M2-CPE does not explain the apparent membrane binding of this protein since the aggregate is solubilized by 1{\%} Triton X-100 at pH 5.5 or by pH 6.0, whereas M2-CPE is not extracted from membranes under these conditions. Taken together, these results are consistent with a model in which the decreasing pH and increasing Ca2+ levels in the trans Golgi network induce the aggregation of CPE, which contributes to the sorting of this protein into regulated pathway secretory vesicles.",
author = "L. Song and Fricker, {Lloyd D.}",
year = "1995",
doi = "10.1074/jbc.270.14.7963",
language = "English (US)",
volume = "270",
pages = "7963--7967",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "14",

}

TY - JOUR

T1 - Calcium- and pH-dependent aggregation of carboxypeptidase E

AU - Song, L.

AU - Fricker, Lloyd D.

PY - 1995

Y1 - 1995

N2 - Carboxypeptidase E (CPE) is involved with the biosynthesis of numerous peptide hormones and neurotransmitters. Several forms of CPE have been previously detected in neuroendocrine cells, including a form which is soluble at pH 5.5 (S-CPE), a form which can be extracted from membranes with 1 M NaCl at pH 5.5 (M1-CPE), and a form which requires both 1% Triton X-100 and 1 M NaCl for extraction from membranes at pH 5.5 (M2-CPE). Like other peptide processing enzymes, CPE is known to be sorted into peptide- containing secretory vesicles of the regulated pathway. One mechanism that has been proposed to be important for sorting of regulated pathway proteins is Ca2+ and pH-induced aggregation. CPE purified from bovine pituitary membranes aggregates at pH 5.5 when the concentration of CPE is 0.3 μg/μl or higher, but not when the concentration is 0.01 μg/μl. Aggregation of CPE is pH-dependent, with very little aggregation occurring at pH 6 or above. At pH 5.0-5.5, the M2 form of CPE shows a greater tendency to aggregate than the other two forms. At pH 6, Ca2+ concentrations from 1-30 mM increase the aggregation of M1- and M2-CPE, but not S-CPE. The aggregation of M2-CPE does not explain the apparent membrane binding of this protein since the aggregate is solubilized by 1% Triton X-100 at pH 5.5 or by pH 6.0, whereas M2-CPE is not extracted from membranes under these conditions. Taken together, these results are consistent with a model in which the decreasing pH and increasing Ca2+ levels in the trans Golgi network induce the aggregation of CPE, which contributes to the sorting of this protein into regulated pathway secretory vesicles.

AB - Carboxypeptidase E (CPE) is involved with the biosynthesis of numerous peptide hormones and neurotransmitters. Several forms of CPE have been previously detected in neuroendocrine cells, including a form which is soluble at pH 5.5 (S-CPE), a form which can be extracted from membranes with 1 M NaCl at pH 5.5 (M1-CPE), and a form which requires both 1% Triton X-100 and 1 M NaCl for extraction from membranes at pH 5.5 (M2-CPE). Like other peptide processing enzymes, CPE is known to be sorted into peptide- containing secretory vesicles of the regulated pathway. One mechanism that has been proposed to be important for sorting of regulated pathway proteins is Ca2+ and pH-induced aggregation. CPE purified from bovine pituitary membranes aggregates at pH 5.5 when the concentration of CPE is 0.3 μg/μl or higher, but not when the concentration is 0.01 μg/μl. Aggregation of CPE is pH-dependent, with very little aggregation occurring at pH 6 or above. At pH 5.0-5.5, the M2 form of CPE shows a greater tendency to aggregate than the other two forms. At pH 6, Ca2+ concentrations from 1-30 mM increase the aggregation of M1- and M2-CPE, but not S-CPE. The aggregation of M2-CPE does not explain the apparent membrane binding of this protein since the aggregate is solubilized by 1% Triton X-100 at pH 5.5 or by pH 6.0, whereas M2-CPE is not extracted from membranes under these conditions. Taken together, these results are consistent with a model in which the decreasing pH and increasing Ca2+ levels in the trans Golgi network induce the aggregation of CPE, which contributes to the sorting of this protein into regulated pathway secretory vesicles.

UR - http://www.scopus.com/inward/record.url?scp=0028912393&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028912393&partnerID=8YFLogxK

U2 - 10.1074/jbc.270.14.7963

DO - 10.1074/jbc.270.14.7963

M3 - Article

C2 - 7713894

AN - SCOPUS:0028912393

VL - 270

SP - 7963

EP - 7967

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 14

ER -