Brightening prospects for early cortical coding of perceived luminance: A high-density electrical mapping study

Mark E. McCourt, John J. Foxe

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Establishing the computational rules and neural substrates of brightness coding is a topic of both historical and contemporary interest. Two major classes of explanations for brightness illusions, such as brightness contrast, can be traced to Hering and Helmholtz. Hering's legacy is a low-level account in which brightness contrast results from obligatory lateral inhibitory interactions occurring at some level(s) in the visual system. Helmholtz offered a high-level account, positing a causal role for factors such as perceptual grouping, inferred illumination, and the extraction of surface properties such as orientation and reflectance. The tension between these theoretical viewpoints persists unabated to date. Intracranial electrophysiological recordings have revealed that brightness is represented in the firing rates of striate neurons, a fact consistent with low-level explanations. However, since the time-course of brightness-related responses relative to the onset of striate activity is undisclosed, it remains possible that striate activation might be temporally and causally secondary to higher-level computational processes. Knowledge of the timing of brightness-related neural activity is thus crucial to both constrain and adjudicate between these competing theories. We utilize high-density electrophysiological recording and a tachistoscopic brightness discrimination task to measure the time-course and scalp topography of brightness-related electrical potentials in human observers. Brightness perception is correlated with electrical activity at the earliest stages of visual cortical processing. These findings are interpreted to support Hering's low-level account of brightness for White's effect, and the results are discussed in the context of current theories of brightness perception.

Original languageEnglish (US)
Pages (from-to)49-56
Number of pages8
JournalNeuroReport
Volume15
Issue number1
DOIs
StatePublished - Jan 2004
Externally publishedYes

Keywords

  • Brightness
  • Brightness contrast
  • CI
  • Electrophysiology
  • High-level
  • Low-level
  • Psychophysics
  • White's effect

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Brightening prospects for early cortical coding of perceived luminance: A high-density electrical mapping study'. Together they form a unique fingerprint.

Cite this