Biochemical factors in the selectivity of leucovorin rescue: Selective inhibition of leucovorin reactivation of dihydrofolate reductase and leucovorin utilization in purine and pyrimidine biosynthesis by methotrexate and dihydrofolate polyglutamates

I. David Goldman, L. H. Matherly

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Recent studies have clarified the critical role that polyglutamylation plays in methotrexate (MTX) action. Polyglutamate derivatives of MTX bind to dihydrofolate reductase (DHFR) with affinities comparable to the monoglutamate, but their retention in cells results in a sustained block in tetrahydrofolate (FH4) synthesis. One important element in the selectivity of MTX action is the preferential buildup and retention of these polyglutamyl forms in susceptible tumor cells as compared to host cells of the bone marrow or gastrointestinal mucosa. This selectivity in the accumulation of MTX polyglutamyl forms has now been further shown to play an important role in the selectivity of leucovorin rescue and may provide a unique new approach to nucleoside protection as well. This paper reviews the current understanding of the biochemical basis for leucovorin rescue and its selectivity. Important elements in leucovorin rescue are reactivation of DHFR with depression of cellular dihydrofolate (FH2) and provision of folate substrate to circumvent the block in FH4 synthesis. Selectivity of leucovorin rescue may be attributed to direct inhibition by MTX polyglutamyl forms, as well as FH2 polyglutamates that accumulate in their presence, at the levels of thymidylate synthase and transformylation during purine nucleotide biosynthesis. The presence of cellular MTX polyglutamates impairs reactivation of endogenous DHFR activity by leucovorin metabolites, and the resultant maintenance of high cellular levels of cellular FH2 and the polyglutamyl derivations of MTX impair the utilization of added FH4 in susceptible tumor cells. This paper also develop the concept of 'early' nucleoside protection in antifolate therapy. In this approach, nucleosides are administered simultaneously with a pulse of MTX to provide early host protection from the cytotoxic effects of modest doses of MTX. Cessation of protection occurs at a time when extracellular and intracellular monoglutamate has fallen to low levels, and the polyglutamyl forms of the drug are present in susceptible tumors but not in host tissues of the gut and bone marrow. Data are presented to demonstrate that increased doses of MTX can be administered in normal and tumor-bearing animal systems as well as in humans by this technique.

Original languageEnglish (US)
Pages (from-to)17-26
Number of pages10
JournalNCI Monographs
Issue number5
StatePublished - 1987
Externally publishedYes

Fingerprint

Tetrahydrofolate Dehydrogenase
Leucovorin
Methotrexate
Nucleosides
Neoplasms
Polyglutamic Acid
Folic Acid Antagonists
Purine Nucleotides
Thymidylate Synthase
methotrexate polyglutamate
dihydrofolate
pyrimidine
purine
Folic Acid
Bone Marrow Cells
Mucous Membrane
Bone Marrow

ASJC Scopus subject areas

  • Cancer Research

Cite this

@article{4f0ff280bf254b938f271338bee9aede,
title = "Biochemical factors in the selectivity of leucovorin rescue: Selective inhibition of leucovorin reactivation of dihydrofolate reductase and leucovorin utilization in purine and pyrimidine biosynthesis by methotrexate and dihydrofolate polyglutamates",
abstract = "Recent studies have clarified the critical role that polyglutamylation plays in methotrexate (MTX) action. Polyglutamate derivatives of MTX bind to dihydrofolate reductase (DHFR) with affinities comparable to the monoglutamate, but their retention in cells results in a sustained block in tetrahydrofolate (FH4) synthesis. One important element in the selectivity of MTX action is the preferential buildup and retention of these polyglutamyl forms in susceptible tumor cells as compared to host cells of the bone marrow or gastrointestinal mucosa. This selectivity in the accumulation of MTX polyglutamyl forms has now been further shown to play an important role in the selectivity of leucovorin rescue and may provide a unique new approach to nucleoside protection as well. This paper reviews the current understanding of the biochemical basis for leucovorin rescue and its selectivity. Important elements in leucovorin rescue are reactivation of DHFR with depression of cellular dihydrofolate (FH2) and provision of folate substrate to circumvent the block in FH4 synthesis. Selectivity of leucovorin rescue may be attributed to direct inhibition by MTX polyglutamyl forms, as well as FH2 polyglutamates that accumulate in their presence, at the levels of thymidylate synthase and transformylation during purine nucleotide biosynthesis. The presence of cellular MTX polyglutamates impairs reactivation of endogenous DHFR activity by leucovorin metabolites, and the resultant maintenance of high cellular levels of cellular FH2 and the polyglutamyl derivations of MTX impair the utilization of added FH4 in susceptible tumor cells. This paper also develop the concept of 'early' nucleoside protection in antifolate therapy. In this approach, nucleosides are administered simultaneously with a pulse of MTX to provide early host protection from the cytotoxic effects of modest doses of MTX. Cessation of protection occurs at a time when extracellular and intracellular monoglutamate has fallen to low levels, and the polyglutamyl forms of the drug are present in susceptible tumors but not in host tissues of the gut and bone marrow. Data are presented to demonstrate that increased doses of MTX can be administered in normal and tumor-bearing animal systems as well as in humans by this technique.",
author = "Goldman, {I. David} and Matherly, {L. H.}",
year = "1987",
language = "English (US)",
pages = "17--26",
journal = "NCI Monographs",
issn = "1052-6773",
publisher = "Oxford University Press",
number = "5",

}

TY - JOUR

T1 - Biochemical factors in the selectivity of leucovorin rescue

T2 - Selective inhibition of leucovorin reactivation of dihydrofolate reductase and leucovorin utilization in purine and pyrimidine biosynthesis by methotrexate and dihydrofolate polyglutamates

AU - Goldman, I. David

AU - Matherly, L. H.

PY - 1987

Y1 - 1987

N2 - Recent studies have clarified the critical role that polyglutamylation plays in methotrexate (MTX) action. Polyglutamate derivatives of MTX bind to dihydrofolate reductase (DHFR) with affinities comparable to the monoglutamate, but their retention in cells results in a sustained block in tetrahydrofolate (FH4) synthesis. One important element in the selectivity of MTX action is the preferential buildup and retention of these polyglutamyl forms in susceptible tumor cells as compared to host cells of the bone marrow or gastrointestinal mucosa. This selectivity in the accumulation of MTX polyglutamyl forms has now been further shown to play an important role in the selectivity of leucovorin rescue and may provide a unique new approach to nucleoside protection as well. This paper reviews the current understanding of the biochemical basis for leucovorin rescue and its selectivity. Important elements in leucovorin rescue are reactivation of DHFR with depression of cellular dihydrofolate (FH2) and provision of folate substrate to circumvent the block in FH4 synthesis. Selectivity of leucovorin rescue may be attributed to direct inhibition by MTX polyglutamyl forms, as well as FH2 polyglutamates that accumulate in their presence, at the levels of thymidylate synthase and transformylation during purine nucleotide biosynthesis. The presence of cellular MTX polyglutamates impairs reactivation of endogenous DHFR activity by leucovorin metabolites, and the resultant maintenance of high cellular levels of cellular FH2 and the polyglutamyl derivations of MTX impair the utilization of added FH4 in susceptible tumor cells. This paper also develop the concept of 'early' nucleoside protection in antifolate therapy. In this approach, nucleosides are administered simultaneously with a pulse of MTX to provide early host protection from the cytotoxic effects of modest doses of MTX. Cessation of protection occurs at a time when extracellular and intracellular monoglutamate has fallen to low levels, and the polyglutamyl forms of the drug are present in susceptible tumors but not in host tissues of the gut and bone marrow. Data are presented to demonstrate that increased doses of MTX can be administered in normal and tumor-bearing animal systems as well as in humans by this technique.

AB - Recent studies have clarified the critical role that polyglutamylation plays in methotrexate (MTX) action. Polyglutamate derivatives of MTX bind to dihydrofolate reductase (DHFR) with affinities comparable to the monoglutamate, but their retention in cells results in a sustained block in tetrahydrofolate (FH4) synthesis. One important element in the selectivity of MTX action is the preferential buildup and retention of these polyglutamyl forms in susceptible tumor cells as compared to host cells of the bone marrow or gastrointestinal mucosa. This selectivity in the accumulation of MTX polyglutamyl forms has now been further shown to play an important role in the selectivity of leucovorin rescue and may provide a unique new approach to nucleoside protection as well. This paper reviews the current understanding of the biochemical basis for leucovorin rescue and its selectivity. Important elements in leucovorin rescue are reactivation of DHFR with depression of cellular dihydrofolate (FH2) and provision of folate substrate to circumvent the block in FH4 synthesis. Selectivity of leucovorin rescue may be attributed to direct inhibition by MTX polyglutamyl forms, as well as FH2 polyglutamates that accumulate in their presence, at the levels of thymidylate synthase and transformylation during purine nucleotide biosynthesis. The presence of cellular MTX polyglutamates impairs reactivation of endogenous DHFR activity by leucovorin metabolites, and the resultant maintenance of high cellular levels of cellular FH2 and the polyglutamyl derivations of MTX impair the utilization of added FH4 in susceptible tumor cells. This paper also develop the concept of 'early' nucleoside protection in antifolate therapy. In this approach, nucleosides are administered simultaneously with a pulse of MTX to provide early host protection from the cytotoxic effects of modest doses of MTX. Cessation of protection occurs at a time when extracellular and intracellular monoglutamate has fallen to low levels, and the polyglutamyl forms of the drug are present in susceptible tumors but not in host tissues of the gut and bone marrow. Data are presented to demonstrate that increased doses of MTX can be administered in normal and tumor-bearing animal systems as well as in humans by this technique.

UR - http://www.scopus.com/inward/record.url?scp=0023502167&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023502167&partnerID=8YFLogxK

M3 - Article

C2 - 2448654

AN - SCOPUS:0023502167

SP - 17

EP - 26

JO - NCI Monographs

JF - NCI Monographs

SN - 1052-6773

IS - 5

ER -