Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue

C. Kay Song, Gary J. Schwartz, Timothy J. Bartness

Research output: Contribution to journalArticle

75 Citations (Scopus)

Abstract

The origins of the sympathetic nervous system (SNS) innervation of white adipose tissue (WAT) have been defined using the transneuronal viral retrograde tract tracer, pseudorabies virus. Activation of this SNS innervation is acknowledged as the principal initiator of WAT lipolysis. The central control of WAT lipolysis may require neural feedback to a brain-SNS-WAT circuit via WAT afferents. Indeed, conventional tract tracing studies have demonstrated that peripheral pseudounipolar dorsal root ganglion (DRG) sensory cells innervate WAT. The central nervous system projections of WAT afferents remain uncharted, however, and form the focus of the present study. We used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer, to define the afferent circuits projecting from WAT to the central nervous system. Siberian hamster inguinal (IWAT) or epididymal WAT was injected with H129 and the neuraxis processed for HSV-1 immunoreactivity. We found substantial overlap in the pattern of WAT sensory afferent projections with multiple SNS outflow sites along the neuraxis, suggesting the possibility of WAT sensory-SNS circuits that could regulate WAT SNS drive and thereby lipolysis. Previously, we demonstrated that systemic 2-deoxy-D-glucose (2DG) elicited increases in the SNS drive to IWAT. Here, we show that systemic 2DG administration also significantly increases multiunit spike activity arising from decentralized IWAT afferents. Collectively, these data provide structural and functional support for the existence of a sensory WAT pathway to the brain, important in the negative feedback control of lipid mobilization.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Volume296
Issue number3
DOIs
StatePublished - Mar 2009

Fingerprint

White Adipose Tissue
Sympathetic Nervous System
Lipolysis
Deoxyglucose
Human Herpesvirus 1
Central Nervous System
Lipid Mobilization
Phodopus
Suid Herpesvirus 1
Groin
Brain
Spinal Ganglia

Keywords

  • 2-deoxy-D-glucose
  • Electrophysiology
  • Lipolysis
  • Sympathetic nervous system

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this

@article{b635e0f465894e4d9f9d164bc9dbe0fd,
title = "Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue",
abstract = "The origins of the sympathetic nervous system (SNS) innervation of white adipose tissue (WAT) have been defined using the transneuronal viral retrograde tract tracer, pseudorabies virus. Activation of this SNS innervation is acknowledged as the principal initiator of WAT lipolysis. The central control of WAT lipolysis may require neural feedback to a brain-SNS-WAT circuit via WAT afferents. Indeed, conventional tract tracing studies have demonstrated that peripheral pseudounipolar dorsal root ganglion (DRG) sensory cells innervate WAT. The central nervous system projections of WAT afferents remain uncharted, however, and form the focus of the present study. We used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer, to define the afferent circuits projecting from WAT to the central nervous system. Siberian hamster inguinal (IWAT) or epididymal WAT was injected with H129 and the neuraxis processed for HSV-1 immunoreactivity. We found substantial overlap in the pattern of WAT sensory afferent projections with multiple SNS outflow sites along the neuraxis, suggesting the possibility of WAT sensory-SNS circuits that could regulate WAT SNS drive and thereby lipolysis. Previously, we demonstrated that systemic 2-deoxy-D-glucose (2DG) elicited increases in the SNS drive to IWAT. Here, we show that systemic 2DG administration also significantly increases multiunit spike activity arising from decentralized IWAT afferents. Collectively, these data provide structural and functional support for the existence of a sensory WAT pathway to the brain, important in the negative feedback control of lipid mobilization.",
keywords = "2-deoxy-D-glucose, Electrophysiology, Lipolysis, Sympathetic nervous system",
author = "Song, {C. Kay} and Schwartz, {Gary J.} and Bartness, {Timothy J.}",
year = "2009",
month = "3",
doi = "10.1152/ajpregu.90786.2008",
language = "English (US)",
volume = "296",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue

AU - Song, C. Kay

AU - Schwartz, Gary J.

AU - Bartness, Timothy J.

PY - 2009/3

Y1 - 2009/3

N2 - The origins of the sympathetic nervous system (SNS) innervation of white adipose tissue (WAT) have been defined using the transneuronal viral retrograde tract tracer, pseudorabies virus. Activation of this SNS innervation is acknowledged as the principal initiator of WAT lipolysis. The central control of WAT lipolysis may require neural feedback to a brain-SNS-WAT circuit via WAT afferents. Indeed, conventional tract tracing studies have demonstrated that peripheral pseudounipolar dorsal root ganglion (DRG) sensory cells innervate WAT. The central nervous system projections of WAT afferents remain uncharted, however, and form the focus of the present study. We used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer, to define the afferent circuits projecting from WAT to the central nervous system. Siberian hamster inguinal (IWAT) or epididymal WAT was injected with H129 and the neuraxis processed for HSV-1 immunoreactivity. We found substantial overlap in the pattern of WAT sensory afferent projections with multiple SNS outflow sites along the neuraxis, suggesting the possibility of WAT sensory-SNS circuits that could regulate WAT SNS drive and thereby lipolysis. Previously, we demonstrated that systemic 2-deoxy-D-glucose (2DG) elicited increases in the SNS drive to IWAT. Here, we show that systemic 2DG administration also significantly increases multiunit spike activity arising from decentralized IWAT afferents. Collectively, these data provide structural and functional support for the existence of a sensory WAT pathway to the brain, important in the negative feedback control of lipid mobilization.

AB - The origins of the sympathetic nervous system (SNS) innervation of white adipose tissue (WAT) have been defined using the transneuronal viral retrograde tract tracer, pseudorabies virus. Activation of this SNS innervation is acknowledged as the principal initiator of WAT lipolysis. The central control of WAT lipolysis may require neural feedback to a brain-SNS-WAT circuit via WAT afferents. Indeed, conventional tract tracing studies have demonstrated that peripheral pseudounipolar dorsal root ganglion (DRG) sensory cells innervate WAT. The central nervous system projections of WAT afferents remain uncharted, however, and form the focus of the present study. We used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer, to define the afferent circuits projecting from WAT to the central nervous system. Siberian hamster inguinal (IWAT) or epididymal WAT was injected with H129 and the neuraxis processed for HSV-1 immunoreactivity. We found substantial overlap in the pattern of WAT sensory afferent projections with multiple SNS outflow sites along the neuraxis, suggesting the possibility of WAT sensory-SNS circuits that could regulate WAT SNS drive and thereby lipolysis. Previously, we demonstrated that systemic 2-deoxy-D-glucose (2DG) elicited increases in the SNS drive to IWAT. Here, we show that systemic 2DG administration also significantly increases multiunit spike activity arising from decentralized IWAT afferents. Collectively, these data provide structural and functional support for the existence of a sensory WAT pathway to the brain, important in the negative feedback control of lipid mobilization.

KW - 2-deoxy-D-glucose

KW - Electrophysiology

KW - Lipolysis

KW - Sympathetic nervous system

UR - http://www.scopus.com/inward/record.url?scp=64149123008&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=64149123008&partnerID=8YFLogxK

U2 - 10.1152/ajpregu.90786.2008

DO - 10.1152/ajpregu.90786.2008

M3 - Article

C2 - 19109367

AN - SCOPUS:64149123008

VL - 296

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 3

ER -