TY - JOUR
T1 - An update on the lithogenic mechanisms of cholecystokinin a receptor (Cckar), an important gallstone gene for lith13
AU - Wang, Helen H.
AU - Portincasa, Piero
AU - Liu, Min
AU - Tso, Patrick
AU - Wang, David Q.H.
N1 - Funding Information:
Funding: This work was supported in part by research grants DK106249, DK114516, DK126369, and AA025737 (to D.Q.-H.W.), as well as P30 DK041296 (to Marion Bessin Liver Research Center), DK59630 (P.T. and M.L.), and DK119135 (P.T. and M.L.), all from the National Institutes of Health (US Public Health Service).
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/12
Y1 - 2020/12
N2 - The cholecystokinin A receptor (CCKAR) is expressed predominantly in the gallbladder and small intestine in the digestive system, where it is responsible for CCK’s regulation of gallbladder and small intestinal motility. The effect of CCKAR on small intestinal transit is a physiological response for regulating intestinal cholesterol absorption. The Cckar gene has been identified to be an important gallstone gene, Lith13, in inbred mice by a powerful quantitative trait locus analysis. Knockout of the Cckar gene in mice enhances cholesterol cholelithogenesis by impairing gallbladder contraction and emptying, promoting cholesterol crystallization and crystal growth, and increasing intestinal cholesterol absorption. Clinical and epidemiological studies have demonstrated that several variants in the CCKAR gene are associated with increased prevalence of cholesterol cholelithiasis in humans. Dysfunctional gallbladder emptying in response to exogenously administered CCK-8 is often found in patients with cholesterol gallstones, and patients with pigment gallstones display an intermediate degree of gallbladder motility defect. Gallbladder hypomotility is also revealed in some subjects without gallstones under several conditions: pregnancy, total parenteral nutrition, celiac disease, oral contraceptives and conjugated estrogens, obesity, diabetes, the metabolic syndrome, and administration of CCKAR antagonists. The physical–chemical, genetic, and molecular studies of Lith13 show that dysfunctional CCKAR enhances susceptibility to cholesterol gallstones through two primary mechanisms: impaired gallbladder emptying is a key risk factor for the development of gallbladder hypomotility, biliary sludge (the precursor of gallstones), and microlithiasis, as well as delayed small intestinal transit augments cholesterol absorption as a major source for the hepatic hypersecretion of biliary cholesterol and for the accumulation of excess cholesterol in the gallbladder wall that further worsens impaired gallbladder motor function. If these two defects in the gallbladder and small intestine could be prevented by the potent CCKAR agonists, the risk of developing cholesterol gallstones could be dramatically reduced.
AB - The cholecystokinin A receptor (CCKAR) is expressed predominantly in the gallbladder and small intestine in the digestive system, where it is responsible for CCK’s regulation of gallbladder and small intestinal motility. The effect of CCKAR on small intestinal transit is a physiological response for regulating intestinal cholesterol absorption. The Cckar gene has been identified to be an important gallstone gene, Lith13, in inbred mice by a powerful quantitative trait locus analysis. Knockout of the Cckar gene in mice enhances cholesterol cholelithogenesis by impairing gallbladder contraction and emptying, promoting cholesterol crystallization and crystal growth, and increasing intestinal cholesterol absorption. Clinical and epidemiological studies have demonstrated that several variants in the CCKAR gene are associated with increased prevalence of cholesterol cholelithiasis in humans. Dysfunctional gallbladder emptying in response to exogenously administered CCK-8 is often found in patients with cholesterol gallstones, and patients with pigment gallstones display an intermediate degree of gallbladder motility defect. Gallbladder hypomotility is also revealed in some subjects without gallstones under several conditions: pregnancy, total parenteral nutrition, celiac disease, oral contraceptives and conjugated estrogens, obesity, diabetes, the metabolic syndrome, and administration of CCKAR antagonists. The physical–chemical, genetic, and molecular studies of Lith13 show that dysfunctional CCKAR enhances susceptibility to cholesterol gallstones through two primary mechanisms: impaired gallbladder emptying is a key risk factor for the development of gallbladder hypomotility, biliary sludge (the precursor of gallstones), and microlithiasis, as well as delayed small intestinal transit augments cholesterol absorption as a major source for the hepatic hypersecretion of biliary cholesterol and for the accumulation of excess cholesterol in the gallbladder wall that further worsens impaired gallbladder motor function. If these two defects in the gallbladder and small intestine could be prevented by the potent CCKAR agonists, the risk of developing cholesterol gallstones could be dramatically reduced.
KW - Bile salts
KW - Biliary sludge
KW - Cholesterol nucleation and crystallization
KW - Gallbladder motility
KW - Intestinal cholesterol absorption
KW - Lith genes
KW - Lithogenic bile
KW - Microlithiasis
KW - Mucin gel
UR - http://www.scopus.com/inward/record.url?scp=85097036223&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097036223&partnerID=8YFLogxK
U2 - 10.3390/genes11121438
DO - 10.3390/genes11121438
M3 - Review article
C2 - 33260332
AN - SCOPUS:85097036223
SN - 2073-4425
VL - 11
SP - 1
EP - 21
JO - Genes
JF - Genes
IS - 12
M1 - 1438
ER -