Altered thermodynamics from remote mutations altering human toward bovine purine nucleoside phosphorylase

Mahmoud Ghanem, Lei Li, Corin Wing, Vern L. Schramm

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

Human (HsPNP) and bovine (BtPNP) purine nucleoside phosphorylases are homotrimers with the catalytic sites located near the subunit-subunit interfaces. Despite the high amino acid sequence similarity (87% identical) and the fully conserved catalytic site contacts between BtPNP and HsPNP, crystal structures reveal that the subunits interact differently and isotope effect studies indicate distinct transition-state structures. The subunit interfaces and crystallographic packing properties of BtPNP differ from HsPNP. Hypothetically, mutating HsPNP toward BtPNP might alter the dynamic, catalytic and subunit packing properties of HsPNP to become more similar to BtPNP. Amino acids Lys22 and His104 in HsPNP were target candidates based on crystal packing contacts and were replaced with their BtPNP counterparts to give Lys22Glu:His104Arg (E:R-PNP). The kinetic properties (steady and pre-steady state), inhibition constants, and thermodynamic properties of E:R-PNP were compared to HsPNP and BtPNP. The E:R-PNP is similar to HsPNP in steady-state kinetic properties. However HsPNP and E:R-PNP show remarkable ratios for (K m guanosine)/(Ki* DADMe-ImmG) of 2.8 × 10 7 and 4.7 × 107 respectively, suggesting that DADMe-ImmG is an excellent mimic of the transition states for both HsPNP and E:R-PNP with a preference for E:R-PNP. Thermodynamic parameters obtained from the temperature dependence studies of the chemical step establish E:R-PNP to be catalytically more efficient than the parent enzyme and reveal differences in the entropic component of catalysis. The two companion manuscripts (Luo, M., Li, L. and Schramm, V. L. (2008) Biochemistry 47, 2565-2576; Li, L., Luo, M., Ghanem, M., Taylor, E. A., and Schramm, V. L. (2008) Biochemistry 47, 2577-2583) report changes in transition-state structure as a consequence of mutations remote from the catalytic sites of both HsPNP and BtPNP.

Original languageEnglish (US)
Pages (from-to)2559-2564
Number of pages6
JournalBiochemistry
Volume47
Issue number8
DOIs
StatePublished - Feb 26 2008

Fingerprint

Purine-Nucleoside Phosphorylase
Thermodynamics
Catalytic Domain
Biochemistry
Mutation
Amino Acids
Kinetics
Guanosine
Isotopes
Catalysis
Manuscripts
Thermodynamic properties
Crystal structure
Amino Acid Sequence
Crystals
Enzymes
Temperature
4'-deaza-1'-aza-2'-deoxy-1'-(9-methylene)immucillin G

ASJC Scopus subject areas

  • Biochemistry

Cite this

Altered thermodynamics from remote mutations altering human toward bovine purine nucleoside phosphorylase. / Ghanem, Mahmoud; Li, Lei; Wing, Corin; Schramm, Vern L.

In: Biochemistry, Vol. 47, No. 8, 26.02.2008, p. 2559-2564.

Research output: Contribution to journalArticle

@article{68bfc0d9aa0640849cf15c487539cef5,
title = "Altered thermodynamics from remote mutations altering human toward bovine purine nucleoside phosphorylase",
abstract = "Human (HsPNP) and bovine (BtPNP) purine nucleoside phosphorylases are homotrimers with the catalytic sites located near the subunit-subunit interfaces. Despite the high amino acid sequence similarity (87{\%} identical) and the fully conserved catalytic site contacts between BtPNP and HsPNP, crystal structures reveal that the subunits interact differently and isotope effect studies indicate distinct transition-state structures. The subunit interfaces and crystallographic packing properties of BtPNP differ from HsPNP. Hypothetically, mutating HsPNP toward BtPNP might alter the dynamic, catalytic and subunit packing properties of HsPNP to become more similar to BtPNP. Amino acids Lys22 and His104 in HsPNP were target candidates based on crystal packing contacts and were replaced with their BtPNP counterparts to give Lys22Glu:His104Arg (E:R-PNP). The kinetic properties (steady and pre-steady state), inhibition constants, and thermodynamic properties of E:R-PNP were compared to HsPNP and BtPNP. The E:R-PNP is similar to HsPNP in steady-state kinetic properties. However HsPNP and E:R-PNP show remarkable ratios for (K m guanosine)/(Ki* DADMe-ImmG) of 2.8 × 10 7 and 4.7 × 107 respectively, suggesting that DADMe-ImmG is an excellent mimic of the transition states for both HsPNP and E:R-PNP with a preference for E:R-PNP. Thermodynamic parameters obtained from the temperature dependence studies of the chemical step establish E:R-PNP to be catalytically more efficient than the parent enzyme and reveal differences in the entropic component of catalysis. The two companion manuscripts (Luo, M., Li, L. and Schramm, V. L. (2008) Biochemistry 47, 2565-2576; Li, L., Luo, M., Ghanem, M., Taylor, E. A., and Schramm, V. L. (2008) Biochemistry 47, 2577-2583) report changes in transition-state structure as a consequence of mutations remote from the catalytic sites of both HsPNP and BtPNP.",
author = "Mahmoud Ghanem and Lei Li and Corin Wing and Schramm, {Vern L.}",
year = "2008",
month = "2",
day = "26",
doi = "10.1021/bi702132e",
language = "English (US)",
volume = "47",
pages = "2559--2564",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "8",

}

TY - JOUR

T1 - Altered thermodynamics from remote mutations altering human toward bovine purine nucleoside phosphorylase

AU - Ghanem, Mahmoud

AU - Li, Lei

AU - Wing, Corin

AU - Schramm, Vern L.

PY - 2008/2/26

Y1 - 2008/2/26

N2 - Human (HsPNP) and bovine (BtPNP) purine nucleoside phosphorylases are homotrimers with the catalytic sites located near the subunit-subunit interfaces. Despite the high amino acid sequence similarity (87% identical) and the fully conserved catalytic site contacts between BtPNP and HsPNP, crystal structures reveal that the subunits interact differently and isotope effect studies indicate distinct transition-state structures. The subunit interfaces and crystallographic packing properties of BtPNP differ from HsPNP. Hypothetically, mutating HsPNP toward BtPNP might alter the dynamic, catalytic and subunit packing properties of HsPNP to become more similar to BtPNP. Amino acids Lys22 and His104 in HsPNP were target candidates based on crystal packing contacts and were replaced with their BtPNP counterparts to give Lys22Glu:His104Arg (E:R-PNP). The kinetic properties (steady and pre-steady state), inhibition constants, and thermodynamic properties of E:R-PNP were compared to HsPNP and BtPNP. The E:R-PNP is similar to HsPNP in steady-state kinetic properties. However HsPNP and E:R-PNP show remarkable ratios for (K m guanosine)/(Ki* DADMe-ImmG) of 2.8 × 10 7 and 4.7 × 107 respectively, suggesting that DADMe-ImmG is an excellent mimic of the transition states for both HsPNP and E:R-PNP with a preference for E:R-PNP. Thermodynamic parameters obtained from the temperature dependence studies of the chemical step establish E:R-PNP to be catalytically more efficient than the parent enzyme and reveal differences in the entropic component of catalysis. The two companion manuscripts (Luo, M., Li, L. and Schramm, V. L. (2008) Biochemistry 47, 2565-2576; Li, L., Luo, M., Ghanem, M., Taylor, E. A., and Schramm, V. L. (2008) Biochemistry 47, 2577-2583) report changes in transition-state structure as a consequence of mutations remote from the catalytic sites of both HsPNP and BtPNP.

AB - Human (HsPNP) and bovine (BtPNP) purine nucleoside phosphorylases are homotrimers with the catalytic sites located near the subunit-subunit interfaces. Despite the high amino acid sequence similarity (87% identical) and the fully conserved catalytic site contacts between BtPNP and HsPNP, crystal structures reveal that the subunits interact differently and isotope effect studies indicate distinct transition-state structures. The subunit interfaces and crystallographic packing properties of BtPNP differ from HsPNP. Hypothetically, mutating HsPNP toward BtPNP might alter the dynamic, catalytic and subunit packing properties of HsPNP to become more similar to BtPNP. Amino acids Lys22 and His104 in HsPNP were target candidates based on crystal packing contacts and were replaced with their BtPNP counterparts to give Lys22Glu:His104Arg (E:R-PNP). The kinetic properties (steady and pre-steady state), inhibition constants, and thermodynamic properties of E:R-PNP were compared to HsPNP and BtPNP. The E:R-PNP is similar to HsPNP in steady-state kinetic properties. However HsPNP and E:R-PNP show remarkable ratios for (K m guanosine)/(Ki* DADMe-ImmG) of 2.8 × 10 7 and 4.7 × 107 respectively, suggesting that DADMe-ImmG is an excellent mimic of the transition states for both HsPNP and E:R-PNP with a preference for E:R-PNP. Thermodynamic parameters obtained from the temperature dependence studies of the chemical step establish E:R-PNP to be catalytically more efficient than the parent enzyme and reveal differences in the entropic component of catalysis. The two companion manuscripts (Luo, M., Li, L. and Schramm, V. L. (2008) Biochemistry 47, 2565-2576; Li, L., Luo, M., Ghanem, M., Taylor, E. A., and Schramm, V. L. (2008) Biochemistry 47, 2577-2583) report changes in transition-state structure as a consequence of mutations remote from the catalytic sites of both HsPNP and BtPNP.

UR - http://www.scopus.com/inward/record.url?scp=39749171162&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=39749171162&partnerID=8YFLogxK

U2 - 10.1021/bi702132e

DO - 10.1021/bi702132e

M3 - Article

VL - 47

SP - 2559

EP - 2564

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 8

ER -