Advanced image-guided external beam radiotherapy.

Thomas Rockwell Mackie, Wolfgang A. Tome

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The goal of radiation therapy is to eradicate tumor stem cells while sparing healthy tissue. Therefore, the first aim must be to delineate tumor from healthy tissue. Advanced imaging techniques will enable one to reduce the uncertainty of microscopic extension of disease. Ultimately, advanced functional imaging systems correlated with image-registered pathological specimens will allow one to delineate disease extent from normal tissue at the tumor periphery. When it is not possible to determine the CTV margin with reasonable certainty, the margins must remain generous and conformal avoidance methodology could and should be deployed to spare critical normal structures. Of equal importance to defining the CTV is the need to guarantee that this target is indeed treated. For this purpose, image guidance using a variety of systems including portal images, ultrasound devices, and CT scanners at the time of treatment has been implemented. Some image-guided methods, portal images for instance, are more amenable for use with rigid structures such as encountered in the sinus whereas others like ultrasound or CT scanners are able to account for nonrigid setup variations. Several strategies for preventing organ motion from degrading the precision that radiotherapy offers have been described. In particular, a CT scan at the time of treatment delivery can also be used as the basis to reconstruct the dose received by the patient. Dose reconstruction will allow the dose just delivered to be superimposed on the pretreatment CT scan and will allow one to compare the reconstructed delivered dose distribution with the planned dose distribution to assess discrepancies between these. Furthermore, reconstruction of the delivered dose distributions holds the promise of allowing one to accumulate dose delivered to the tumor and normal structures on a fraction per fraction basis. This will ultimately allow for the determination of treatment-specific tumor control probabilities and normal tissue complication probabilities.

Original languageEnglish (US)
Pages (from-to)7-39
Number of pages33
JournalCancer Treatment and Research
Volume139
StatePublished - 2008
Externally publishedYes

Fingerprint

Radiotherapy
Neoplasms
Portal System
Neoplastic Stem Cells
Uncertainty
Therapeutics
Equipment and Supplies

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Advanced image-guided external beam radiotherapy. / Mackie, Thomas Rockwell; Tome, Wolfgang A.

In: Cancer Treatment and Research, Vol. 139, 2008, p. 7-39.

Research output: Contribution to journalArticle

@article{7943708fb8e94607b2d2797a5f7ab57f,
title = "Advanced image-guided external beam radiotherapy.",
abstract = "The goal of radiation therapy is to eradicate tumor stem cells while sparing healthy tissue. Therefore, the first aim must be to delineate tumor from healthy tissue. Advanced imaging techniques will enable one to reduce the uncertainty of microscopic extension of disease. Ultimately, advanced functional imaging systems correlated with image-registered pathological specimens will allow one to delineate disease extent from normal tissue at the tumor periphery. When it is not possible to determine the CTV margin with reasonable certainty, the margins must remain generous and conformal avoidance methodology could and should be deployed to spare critical normal structures. Of equal importance to defining the CTV is the need to guarantee that this target is indeed treated. For this purpose, image guidance using a variety of systems including portal images, ultrasound devices, and CT scanners at the time of treatment has been implemented. Some image-guided methods, portal images for instance, are more amenable for use with rigid structures such as encountered in the sinus whereas others like ultrasound or CT scanners are able to account for nonrigid setup variations. Several strategies for preventing organ motion from degrading the precision that radiotherapy offers have been described. In particular, a CT scan at the time of treatment delivery can also be used as the basis to reconstruct the dose received by the patient. Dose reconstruction will allow the dose just delivered to be superimposed on the pretreatment CT scan and will allow one to compare the reconstructed delivered dose distribution with the planned dose distribution to assess discrepancies between these. Furthermore, reconstruction of the delivered dose distributions holds the promise of allowing one to accumulate dose delivered to the tumor and normal structures on a fraction per fraction basis. This will ultimately allow for the determination of treatment-specific tumor control probabilities and normal tissue complication probabilities.",
author = "Mackie, {Thomas Rockwell} and Tome, {Wolfgang A.}",
year = "2008",
language = "English (US)",
volume = "139",
pages = "7--39",
journal = "Cancer Treatment and Research",
issn = "0927-3042",
publisher = "Springer Netherlands",

}

TY - JOUR

T1 - Advanced image-guided external beam radiotherapy.

AU - Mackie, Thomas Rockwell

AU - Tome, Wolfgang A.

PY - 2008

Y1 - 2008

N2 - The goal of radiation therapy is to eradicate tumor stem cells while sparing healthy tissue. Therefore, the first aim must be to delineate tumor from healthy tissue. Advanced imaging techniques will enable one to reduce the uncertainty of microscopic extension of disease. Ultimately, advanced functional imaging systems correlated with image-registered pathological specimens will allow one to delineate disease extent from normal tissue at the tumor periphery. When it is not possible to determine the CTV margin with reasonable certainty, the margins must remain generous and conformal avoidance methodology could and should be deployed to spare critical normal structures. Of equal importance to defining the CTV is the need to guarantee that this target is indeed treated. For this purpose, image guidance using a variety of systems including portal images, ultrasound devices, and CT scanners at the time of treatment has been implemented. Some image-guided methods, portal images for instance, are more amenable for use with rigid structures such as encountered in the sinus whereas others like ultrasound or CT scanners are able to account for nonrigid setup variations. Several strategies for preventing organ motion from degrading the precision that radiotherapy offers have been described. In particular, a CT scan at the time of treatment delivery can also be used as the basis to reconstruct the dose received by the patient. Dose reconstruction will allow the dose just delivered to be superimposed on the pretreatment CT scan and will allow one to compare the reconstructed delivered dose distribution with the planned dose distribution to assess discrepancies between these. Furthermore, reconstruction of the delivered dose distributions holds the promise of allowing one to accumulate dose delivered to the tumor and normal structures on a fraction per fraction basis. This will ultimately allow for the determination of treatment-specific tumor control probabilities and normal tissue complication probabilities.

AB - The goal of radiation therapy is to eradicate tumor stem cells while sparing healthy tissue. Therefore, the first aim must be to delineate tumor from healthy tissue. Advanced imaging techniques will enable one to reduce the uncertainty of microscopic extension of disease. Ultimately, advanced functional imaging systems correlated with image-registered pathological specimens will allow one to delineate disease extent from normal tissue at the tumor periphery. When it is not possible to determine the CTV margin with reasonable certainty, the margins must remain generous and conformal avoidance methodology could and should be deployed to spare critical normal structures. Of equal importance to defining the CTV is the need to guarantee that this target is indeed treated. For this purpose, image guidance using a variety of systems including portal images, ultrasound devices, and CT scanners at the time of treatment has been implemented. Some image-guided methods, portal images for instance, are more amenable for use with rigid structures such as encountered in the sinus whereas others like ultrasound or CT scanners are able to account for nonrigid setup variations. Several strategies for preventing organ motion from degrading the precision that radiotherapy offers have been described. In particular, a CT scan at the time of treatment delivery can also be used as the basis to reconstruct the dose received by the patient. Dose reconstruction will allow the dose just delivered to be superimposed on the pretreatment CT scan and will allow one to compare the reconstructed delivered dose distribution with the planned dose distribution to assess discrepancies between these. Furthermore, reconstruction of the delivered dose distributions holds the promise of allowing one to accumulate dose delivered to the tumor and normal structures on a fraction per fraction basis. This will ultimately allow for the determination of treatment-specific tumor control probabilities and normal tissue complication probabilities.

UR - http://www.scopus.com/inward/record.url?scp=40049105269&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=40049105269&partnerID=8YFLogxK

M3 - Article

VL - 139

SP - 7

EP - 39

JO - Cancer Treatment and Research

JF - Cancer Treatment and Research

SN - 0927-3042

ER -