Ablation spectra of the human cornea

David Cohen, Roy Chuck, Greg Bearman, Peter McDonnell, Warren Grundfest

Research output: Contribution to journalArticle

16 Scopus citations

Abstract

Ablation of human corneal tissue with 193 nm excimer laser energy generates fluorescence in the near ultraviolet and visible regions of the spectrum. The fluorescence spectra from five human corneas were collected during ablation in vitro. We find that the fluorescence spectrum changes continuously as the cornea is ablated from the epithelial surface towards the endothelium. We reduced the dimensionality of the large data set resulting from each cornea by a principal components analysis. The three most significant principal component eigenvectors suffice to describe the observed spectral evolution, and independent analysis of each tissue sample produces a similar set of eigenvectors. The evolution of the calculated eigenvector weighting factors during ablation then corresponds to the observed spectral evolution. In fact, this evolution is qualitatively consistent between corneas. We suggest that this spectral evolution offers promise as a real-time surgical feedback tool.

Original languageEnglish (US)
Pages (from-to)339-343
Number of pages5
JournalJournal of Biomedical Optics
Volume6
Issue number3
DOIs
StatePublished - Jul 2001
Externally publishedYes

Keywords

  • Ablation
  • Cornea
  • Fluorescence
  • Lasers

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Ablation spectra of the human cornea'. Together they form a unique fingerprint.

  • Cite this

    Cohen, D., Chuck, R., Bearman, G., McDonnell, P., & Grundfest, W. (2001). Ablation spectra of the human cornea. Journal of Biomedical Optics, 6(3), 339-343. https://doi.org/10.1117/1.1380670