A vibrational analysis of the catalytically important C4-H bonds of NADH bound to lactate or malate dehydrogenase: Ground-state effects

Hua Deng, Jie Zheng, Donald Sloan, John Burgner, Robert Callender

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

We have measured the frequency of the carbon-hydrogen stretching mode of the pro-R and pro-S C4-H bonds of NADH in solution and when bound to pig heart lactate (LDH) or mitochondrial malate (mMDH) dehydrogenases. This is achieved by specifically deuterating the C4 pro-R or pro-S hydrogens of NADH and determining the frequencies of the resulting C4-D stretches by Raman difference spectroscopy. We find that the frequencies of the two C4-D stretching modes for the two bonds are essentially the same for the unliganded coenzyme. On the other hand, the position of the pro-S-[4-2H]NADH stretch shifts upward by about 23-30 cm-1 in its binary complex with either lactate or malate dehydrogenase relative to that observed in solution, while that for the bound pro-R-[4-2H] NADH is relatively unchanged. The fact that the frequency of the pro-R hydrogen is not significantly affected during complex formation suggests that the rate enhancements for reaction of substrate with NADH brought about by both pig heart LDH and mMDH apparently do not involve either stabilization or destabilization of the pro-R hydrogen of NADH in enzyme-coenzyme binary complexes, in agreement with previous chemical studies. That these proteins are able to regulate the frequencies of the two C4-D bonds differentially, and hence the electronic distributions in these bonds, has important implications for the stereochemical reactions catalyzed by the NAD dehydrogenases, and this is discussed. We have studied a number of factors which can affect the C4-H stretch frequency by normal mode analyses of our Raman results based on semiempirical quantum mechanical calculations (MINDO/3, MNDO, and AM1). These factors include the interaction between the nicotinamide ring nitrogen and the ribose oxygen, the torsional angle of the amide arm, puckering of the ring, and the external charge or dipole modeled by a formaldehyde. Within the range of our study, the positions of the C4-D stretches may be understood as the result of two conformational changes of the nicotinamide ring that occur when NADH forms a binary complex with LDH or mMDH: the rotation of the amide group from a solution syn to anti in situ and the adoption of a "half-boat" of the dihydronicotinamide ring of NADH when bound to the two enzymes from an essentially planar solution structure. The estimated angle of the C4 ring carbon with respect to the other carbon atoms is around 15°, with the pro-R hydrogen at a pseudoaxial position and the pro-S hydrogen at a pseudoequatorial position. Our calculations also show that electrostatic interactions, as modeled by the interaction between the C-D bond and a point charge or a carbonyl dipole, can also be important in determining the C-D stretch frequency and differences between the pro-R and pro-S bond frequencies, although they apparently have no major effect in LDH or mMDH.

Original languageEnglish (US)
Pages (from-to)5085-5092
Number of pages8
JournalBiochemistry
Volume31
Issue number21
StatePublished - 1992
Externally publishedYes

Fingerprint

Malate Dehydrogenase
NAD
Ground state
Lactic Acid
Hydrogen
Complement C4
Niacinamide
Carbon
Amides
Stretching
Swine
Enzymes and Coenzymes
Ribose
Ships
Raman Spectrum Analysis
Coenzymes
Boats
Coulomb interactions
Static Electricity
Formaldehyde

ASJC Scopus subject areas

  • Biochemistry

Cite this

A vibrational analysis of the catalytically important C4-H bonds of NADH bound to lactate or malate dehydrogenase : Ground-state effects. / Deng, Hua; Zheng, Jie; Sloan, Donald; Burgner, John; Callender, Robert.

In: Biochemistry, Vol. 31, No. 21, 1992, p. 5085-5092.

Research output: Contribution to journalArticle

@article{446222a372c3493bb941d427eb542599,
title = "A vibrational analysis of the catalytically important C4-H bonds of NADH bound to lactate or malate dehydrogenase: Ground-state effects",
abstract = "We have measured the frequency of the carbon-hydrogen stretching mode of the pro-R and pro-S C4-H bonds of NADH in solution and when bound to pig heart lactate (LDH) or mitochondrial malate (mMDH) dehydrogenases. This is achieved by specifically deuterating the C4 pro-R or pro-S hydrogens of NADH and determining the frequencies of the resulting C4-D stretches by Raman difference spectroscopy. We find that the frequencies of the two C4-D stretching modes for the two bonds are essentially the same for the unliganded coenzyme. On the other hand, the position of the pro-S-[4-2H]NADH stretch shifts upward by about 23-30 cm-1 in its binary complex with either lactate or malate dehydrogenase relative to that observed in solution, while that for the bound pro-R-[4-2H] NADH is relatively unchanged. The fact that the frequency of the pro-R hydrogen is not significantly affected during complex formation suggests that the rate enhancements for reaction of substrate with NADH brought about by both pig heart LDH and mMDH apparently do not involve either stabilization or destabilization of the pro-R hydrogen of NADH in enzyme-coenzyme binary complexes, in agreement with previous chemical studies. That these proteins are able to regulate the frequencies of the two C4-D bonds differentially, and hence the electronic distributions in these bonds, has important implications for the stereochemical reactions catalyzed by the NAD dehydrogenases, and this is discussed. We have studied a number of factors which can affect the C4-H stretch frequency by normal mode analyses of our Raman results based on semiempirical quantum mechanical calculations (MINDO/3, MNDO, and AM1). These factors include the interaction between the nicotinamide ring nitrogen and the ribose oxygen, the torsional angle of the amide arm, puckering of the ring, and the external charge or dipole modeled by a formaldehyde. Within the range of our study, the positions of the C4-D stretches may be understood as the result of two conformational changes of the nicotinamide ring that occur when NADH forms a binary complex with LDH or mMDH: the rotation of the amide group from a solution syn to anti in situ and the adoption of a {"}half-boat{"} of the dihydronicotinamide ring of NADH when bound to the two enzymes from an essentially planar solution structure. The estimated angle of the C4 ring carbon with respect to the other carbon atoms is around 15°, with the pro-R hydrogen at a pseudoaxial position and the pro-S hydrogen at a pseudoequatorial position. Our calculations also show that electrostatic interactions, as modeled by the interaction between the C-D bond and a point charge or a carbonyl dipole, can also be important in determining the C-D stretch frequency and differences between the pro-R and pro-S bond frequencies, although they apparently have no major effect in LDH or mMDH.",
author = "Hua Deng and Jie Zheng and Donald Sloan and John Burgner and Robert Callender",
year = "1992",
language = "English (US)",
volume = "31",
pages = "5085--5092",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "21",

}

TY - JOUR

T1 - A vibrational analysis of the catalytically important C4-H bonds of NADH bound to lactate or malate dehydrogenase

T2 - Ground-state effects

AU - Deng, Hua

AU - Zheng, Jie

AU - Sloan, Donald

AU - Burgner, John

AU - Callender, Robert

PY - 1992

Y1 - 1992

N2 - We have measured the frequency of the carbon-hydrogen stretching mode of the pro-R and pro-S C4-H bonds of NADH in solution and when bound to pig heart lactate (LDH) or mitochondrial malate (mMDH) dehydrogenases. This is achieved by specifically deuterating the C4 pro-R or pro-S hydrogens of NADH and determining the frequencies of the resulting C4-D stretches by Raman difference spectroscopy. We find that the frequencies of the two C4-D stretching modes for the two bonds are essentially the same for the unliganded coenzyme. On the other hand, the position of the pro-S-[4-2H]NADH stretch shifts upward by about 23-30 cm-1 in its binary complex with either lactate or malate dehydrogenase relative to that observed in solution, while that for the bound pro-R-[4-2H] NADH is relatively unchanged. The fact that the frequency of the pro-R hydrogen is not significantly affected during complex formation suggests that the rate enhancements for reaction of substrate with NADH brought about by both pig heart LDH and mMDH apparently do not involve either stabilization or destabilization of the pro-R hydrogen of NADH in enzyme-coenzyme binary complexes, in agreement with previous chemical studies. That these proteins are able to regulate the frequencies of the two C4-D bonds differentially, and hence the electronic distributions in these bonds, has important implications for the stereochemical reactions catalyzed by the NAD dehydrogenases, and this is discussed. We have studied a number of factors which can affect the C4-H stretch frequency by normal mode analyses of our Raman results based on semiempirical quantum mechanical calculations (MINDO/3, MNDO, and AM1). These factors include the interaction between the nicotinamide ring nitrogen and the ribose oxygen, the torsional angle of the amide arm, puckering of the ring, and the external charge or dipole modeled by a formaldehyde. Within the range of our study, the positions of the C4-D stretches may be understood as the result of two conformational changes of the nicotinamide ring that occur when NADH forms a binary complex with LDH or mMDH: the rotation of the amide group from a solution syn to anti in situ and the adoption of a "half-boat" of the dihydronicotinamide ring of NADH when bound to the two enzymes from an essentially planar solution structure. The estimated angle of the C4 ring carbon with respect to the other carbon atoms is around 15°, with the pro-R hydrogen at a pseudoaxial position and the pro-S hydrogen at a pseudoequatorial position. Our calculations also show that electrostatic interactions, as modeled by the interaction between the C-D bond and a point charge or a carbonyl dipole, can also be important in determining the C-D stretch frequency and differences between the pro-R and pro-S bond frequencies, although they apparently have no major effect in LDH or mMDH.

AB - We have measured the frequency of the carbon-hydrogen stretching mode of the pro-R and pro-S C4-H bonds of NADH in solution and when bound to pig heart lactate (LDH) or mitochondrial malate (mMDH) dehydrogenases. This is achieved by specifically deuterating the C4 pro-R or pro-S hydrogens of NADH and determining the frequencies of the resulting C4-D stretches by Raman difference spectroscopy. We find that the frequencies of the two C4-D stretching modes for the two bonds are essentially the same for the unliganded coenzyme. On the other hand, the position of the pro-S-[4-2H]NADH stretch shifts upward by about 23-30 cm-1 in its binary complex with either lactate or malate dehydrogenase relative to that observed in solution, while that for the bound pro-R-[4-2H] NADH is relatively unchanged. The fact that the frequency of the pro-R hydrogen is not significantly affected during complex formation suggests that the rate enhancements for reaction of substrate with NADH brought about by both pig heart LDH and mMDH apparently do not involve either stabilization or destabilization of the pro-R hydrogen of NADH in enzyme-coenzyme binary complexes, in agreement with previous chemical studies. That these proteins are able to regulate the frequencies of the two C4-D bonds differentially, and hence the electronic distributions in these bonds, has important implications for the stereochemical reactions catalyzed by the NAD dehydrogenases, and this is discussed. We have studied a number of factors which can affect the C4-H stretch frequency by normal mode analyses of our Raman results based on semiempirical quantum mechanical calculations (MINDO/3, MNDO, and AM1). These factors include the interaction between the nicotinamide ring nitrogen and the ribose oxygen, the torsional angle of the amide arm, puckering of the ring, and the external charge or dipole modeled by a formaldehyde. Within the range of our study, the positions of the C4-D stretches may be understood as the result of two conformational changes of the nicotinamide ring that occur when NADH forms a binary complex with LDH or mMDH: the rotation of the amide group from a solution syn to anti in situ and the adoption of a "half-boat" of the dihydronicotinamide ring of NADH when bound to the two enzymes from an essentially planar solution structure. The estimated angle of the C4 ring carbon with respect to the other carbon atoms is around 15°, with the pro-R hydrogen at a pseudoaxial position and the pro-S hydrogen at a pseudoequatorial position. Our calculations also show that electrostatic interactions, as modeled by the interaction between the C-D bond and a point charge or a carbonyl dipole, can also be important in determining the C-D stretch frequency and differences between the pro-R and pro-S bond frequencies, although they apparently have no major effect in LDH or mMDH.

UR - http://www.scopus.com/inward/record.url?scp=0026755601&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026755601&partnerID=8YFLogxK

M3 - Article

C2 - 1599930

AN - SCOPUS:0026755601

VL - 31

SP - 5085

EP - 5092

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 21

ER -