A Prospective Assessment of Optimal Mechanical Ventilation Parameters for Pediatric Catheter Ablation

Christopher M. Janson, Scott R. Ceresnak, Jaeun M. Choi, Anne M. Dubin, Kara S. Motonaga, Glenn E. Mann, Madelyn Kahana, Ingrid Fitz-James, Lisa Wise-Faberowski, Komal Kamra, Lynn Nappo, Anthony Trela, Robert H. Pass

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Catheter stability, an important factor in ablation success, is affected by ventilation. Optimal ventilation strategies for pediatric catheter ablation are not known. We hypothesized that small tidal volume and positive end-expiratory pressure are associated with reduced ablation catheter movement at annular positions. Subjects aged 5–25 years undergoing ablation for supraventricular tachycardia (SVT) or WPW at two centers from March 2015 to September 2016 were prospectively enrolled and randomized to receive mechanical ventilation with either positive end-expiratory pressure of 5 cm H 2 O (PEEP) or 0 cm H 2 O (ZEEP). Movement of the ablation catheter tip at standard annular positions was measured using 3D electroanatomic mapping systems under two conditions: small tidal volume (STV) (3–5 mL/kg) or large TV (LTV) (6–8 mL/kg). 58 subjects (mean age 13.8 years) were enrolled for a total of 266 separate observations of catheter movement. STV ventilation was associated with significantly reduced catheter movement, compared to LTV at all positions (right posteroseptal: 2.5 ± 1.4 vs. 5.2 ± 3.1 mm, p < 0.0001; right lateral: 2.7 ± 1.6 vs. 6.3 ± 3.5 mm, p < 0.0001; left lateral: 1.8 ± 1.0 vs. 4.3 ± 1.9 mm, p < 0.0001). The presence or absence of PEEP had no effect on catheter movement. In multivariable analysis, STV was associated with a 3.1-mm reduction in movement (95% CI 2.6–3.5, p < 0.0001), adjusting for end-expiratory pressure, annular location, and patient size. We conclude that STV ventilation is associated with reduced ablation catheter movement compared to a LTV strategy, independent of PEEP and annular position.

Original languageEnglish (US)
Pages (from-to)126-132
Number of pages7
JournalPediatric Cardiology
Volume40
Issue number1
DOIs
StatePublished - Jan 15 2019

Keywords

  • Catheter ablation
  • Catheter stability
  • Electrophysiology
  • SVT
  • Ventilation
  • WPW

ASJC Scopus subject areas

  • Pediatrics, Perinatology, and Child Health
  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'A Prospective Assessment of Optimal Mechanical Ventilation Parameters for Pediatric Catheter Ablation'. Together they form a unique fingerprint.

Cite this