TY - JOUR
T1 - A novel and lethal De Novo LQT-3 mutation in a newborn with distinct molecular pharmacology and therapeutic response
AU - Bankston, John R.
AU - Yue, Minerva
AU - Chung, Wendy
AU - Spyres, Meghan
AU - Pass, Robert H.
AU - Silver, Eric
AU - Sampson, Kevin J.
AU - Kass, Robert S.
PY - 2007/12/5
Y1 - 2007/12/5
N2 - Background: SCN5A encodes the α-subunit (Nav1.5) of the principle Na+ channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LOTS) variant 3 (LQT-3) in adults by disrupting inactivation of the Nav1.5 channel. Pharmacological targeting of mutation-altered Na+ channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LOTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS) and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults. Methods and Results. Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C) discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na+ channel blockers flecainide and mexiletine. Our goal was to determine the Na+ channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na+ channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C) and a common variant in KCNH2 (K897T). Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na+ channels revealed significant changes in channel biophysics, all contributing to the proband's phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically. Significance. The results of our study provide further evidence of the grave vulnerability of newborns to Na+ channel defects and suggest that both genetic background and age are particularly important in developing a mutation-specific therapeutic personalized approach to manage disorders in the young.
AB - Background: SCN5A encodes the α-subunit (Nav1.5) of the principle Na+ channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LOTS) variant 3 (LQT-3) in adults by disrupting inactivation of the Nav1.5 channel. Pharmacological targeting of mutation-altered Na+ channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LOTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS) and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults. Methods and Results. Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C) discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na+ channel blockers flecainide and mexiletine. Our goal was to determine the Na+ channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na+ channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C) and a common variant in KCNH2 (K897T). Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na+ channels revealed significant changes in channel biophysics, all contributing to the proband's phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically. Significance. The results of our study provide further evidence of the grave vulnerability of newborns to Na+ channel defects and suggest that both genetic background and age are particularly important in developing a mutation-specific therapeutic personalized approach to manage disorders in the young.
UR - http://www.scopus.com/inward/record.url?scp=43449097536&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=43449097536&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0001258
DO - 10.1371/journal.pone.0001258
M3 - Article
C2 - 18060054
AN - SCOPUS:43449097536
SN - 1932-6203
VL - 2
JO - PLoS One
JF - PLoS One
IS - 12
M1 - e1258
ER -