A Multiscale Model for the Self-Assembly of Coat Proteins in Bacteriophage MS2

Bo Wang, Junjie Zhang, Yinghao Wu

Research output: Contribution to journalArticle

Abstract

The self-assembly of viral capsids is an essential step to the formation of infectious viruses. Elucidating the kinetic mechanisms of how a capsid or virus-like particle assembles could advance our knowledge about the viral lifecycle, as well as the general principles in self-assembly of biomaterials. However, current understanding of capsid assembly remains incomplete for many viruses due to the fact that the transient intermediates along the assembling pathways are experimentally difficult to be detected. In this paper, we constructed a new multiscale computational framework to simulate the self-assembly of virus-like particles. We applied our method to the coat proteins of bacteriophage MS2 as a specific model system. This virus-like particle of bacteriophage MS2 has a unique feature that its 90 sequence-identical dimers can be classified into two structurally various groups: one is the symmetric CC dimer, and the other is the asymmetric AB dimer. The homotypic interactions between AB dimers result in a 5-fold symmetric contact, while the heterotypic interactions between AB and CC dimers result in 6-fold symmetric contact. We found that the assembly can be described as a physical process of phase transition that is regulated by various factors such as concentration and specific stoichiometry between AB and CC dimers. Our simulations also demonstrate that heterotypic and homotypic interfaces play distinctive roles in modulating the assembling kinetics. The interaction between AB and CC dimers is much more dynamic than that between two AB dimers. We therefore suggest that the alternate growth of viral capsid through the heterotypic dimer interactions dominates the assembling pathways. This is, to the best of our knowledge, the first multiscale model to simulate the assembling process of coat proteins in bacteriophage MS2. The generality of this approach opens the door to its further applications in assembly of other viral capsids, virus-like particles, and novel drug delivery systems.

Original languageEnglish (US)
JournalJournal of Chemical Information and Modeling
DOIs
StateAccepted/In press - Jan 1 2019

Fingerprint

Bacteriophages
Capsid Proteins
Dimers
Self assembly
Proteins
Viruses
interaction
contact
role play
system model
drug
simulation
Kinetics
Biocompatible Materials
Biomaterials
Stoichiometry
Group
Phase transitions

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Computer Science Applications
  • Library and Information Sciences

Cite this

A Multiscale Model for the Self-Assembly of Coat Proteins in Bacteriophage MS2. / Wang, Bo; Zhang, Junjie; Wu, Yinghao.

In: Journal of Chemical Information and Modeling, 01.01.2019.

Research output: Contribution to journalArticle

@article{98d804872cd8448db78b41d9d0dda79c,
title = "A Multiscale Model for the Self-Assembly of Coat Proteins in Bacteriophage MS2",
abstract = "The self-assembly of viral capsids is an essential step to the formation of infectious viruses. Elucidating the kinetic mechanisms of how a capsid or virus-like particle assembles could advance our knowledge about the viral lifecycle, as well as the general principles in self-assembly of biomaterials. However, current understanding of capsid assembly remains incomplete for many viruses due to the fact that the transient intermediates along the assembling pathways are experimentally difficult to be detected. In this paper, we constructed a new multiscale computational framework to simulate the self-assembly of virus-like particles. We applied our method to the coat proteins of bacteriophage MS2 as a specific model system. This virus-like particle of bacteriophage MS2 has a unique feature that its 90 sequence-identical dimers can be classified into two structurally various groups: one is the symmetric CC dimer, and the other is the asymmetric AB dimer. The homotypic interactions between AB dimers result in a 5-fold symmetric contact, while the heterotypic interactions between AB and CC dimers result in 6-fold symmetric contact. We found that the assembly can be described as a physical process of phase transition that is regulated by various factors such as concentration and specific stoichiometry between AB and CC dimers. Our simulations also demonstrate that heterotypic and homotypic interfaces play distinctive roles in modulating the assembling kinetics. The interaction between AB and CC dimers is much more dynamic than that between two AB dimers. We therefore suggest that the alternate growth of viral capsid through the heterotypic dimer interactions dominates the assembling pathways. This is, to the best of our knowledge, the first multiscale model to simulate the assembling process of coat proteins in bacteriophage MS2. The generality of this approach opens the door to its further applications in assembly of other viral capsids, virus-like particles, and novel drug delivery systems.",
author = "Bo Wang and Junjie Zhang and Yinghao Wu",
year = "2019",
month = "1",
day = "1",
doi = "10.1021/acs.jcim.9b00514",
language = "English (US)",
journal = "Journal of Chemical Information and Modeling",
issn = "1549-9596",
publisher = "American Chemical Society",

}

TY - JOUR

T1 - A Multiscale Model for the Self-Assembly of Coat Proteins in Bacteriophage MS2

AU - Wang, Bo

AU - Zhang, Junjie

AU - Wu, Yinghao

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The self-assembly of viral capsids is an essential step to the formation of infectious viruses. Elucidating the kinetic mechanisms of how a capsid or virus-like particle assembles could advance our knowledge about the viral lifecycle, as well as the general principles in self-assembly of biomaterials. However, current understanding of capsid assembly remains incomplete for many viruses due to the fact that the transient intermediates along the assembling pathways are experimentally difficult to be detected. In this paper, we constructed a new multiscale computational framework to simulate the self-assembly of virus-like particles. We applied our method to the coat proteins of bacteriophage MS2 as a specific model system. This virus-like particle of bacteriophage MS2 has a unique feature that its 90 sequence-identical dimers can be classified into two structurally various groups: one is the symmetric CC dimer, and the other is the asymmetric AB dimer. The homotypic interactions between AB dimers result in a 5-fold symmetric contact, while the heterotypic interactions between AB and CC dimers result in 6-fold symmetric contact. We found that the assembly can be described as a physical process of phase transition that is regulated by various factors such as concentration and specific stoichiometry between AB and CC dimers. Our simulations also demonstrate that heterotypic and homotypic interfaces play distinctive roles in modulating the assembling kinetics. The interaction between AB and CC dimers is much more dynamic than that between two AB dimers. We therefore suggest that the alternate growth of viral capsid through the heterotypic dimer interactions dominates the assembling pathways. This is, to the best of our knowledge, the first multiscale model to simulate the assembling process of coat proteins in bacteriophage MS2. The generality of this approach opens the door to its further applications in assembly of other viral capsids, virus-like particles, and novel drug delivery systems.

AB - The self-assembly of viral capsids is an essential step to the formation of infectious viruses. Elucidating the kinetic mechanisms of how a capsid or virus-like particle assembles could advance our knowledge about the viral lifecycle, as well as the general principles in self-assembly of biomaterials. However, current understanding of capsid assembly remains incomplete for many viruses due to the fact that the transient intermediates along the assembling pathways are experimentally difficult to be detected. In this paper, we constructed a new multiscale computational framework to simulate the self-assembly of virus-like particles. We applied our method to the coat proteins of bacteriophage MS2 as a specific model system. This virus-like particle of bacteriophage MS2 has a unique feature that its 90 sequence-identical dimers can be classified into two structurally various groups: one is the symmetric CC dimer, and the other is the asymmetric AB dimer. The homotypic interactions between AB dimers result in a 5-fold symmetric contact, while the heterotypic interactions between AB and CC dimers result in 6-fold symmetric contact. We found that the assembly can be described as a physical process of phase transition that is regulated by various factors such as concentration and specific stoichiometry between AB and CC dimers. Our simulations also demonstrate that heterotypic and homotypic interfaces play distinctive roles in modulating the assembling kinetics. The interaction between AB and CC dimers is much more dynamic than that between two AB dimers. We therefore suggest that the alternate growth of viral capsid through the heterotypic dimer interactions dominates the assembling pathways. This is, to the best of our knowledge, the first multiscale model to simulate the assembling process of coat proteins in bacteriophage MS2. The generality of this approach opens the door to its further applications in assembly of other viral capsids, virus-like particles, and novel drug delivery systems.

UR - http://www.scopus.com/inward/record.url?scp=85072349483&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072349483&partnerID=8YFLogxK

U2 - 10.1021/acs.jcim.9b00514

DO - 10.1021/acs.jcim.9b00514

M3 - Article

JO - Journal of Chemical Information and Modeling

JF - Journal of Chemical Information and Modeling

SN - 1549-9596

ER -