TY - JOUR
T1 - A dominant mutation to ricin resistance in Chinese hamster ovary cells induces UDP-GlcNAc:glycopeptide β-4-N-acetylglucosaminyltransferase III activity
AU - Campbell, C.
AU - Stanley, P.
PY - 1984
Y1 - 1984
N2 - A biochemical basis for the LEC10 mutant phenotype of Chinese hamster ovary cells has been identified. Independent LEC10 mutants, originally selected for resistance to the toxicity of ricin, have been shown to exhibit reduced binding of 125I-ricin at the cell surface. Although this is indicative of structural changes in cell-surface carbohydrates, labeling of plasma membranes with galactose oxidase/[3H]borohydride revealed no significant differences between mutant and parental cells. Alterations in the carbohydrates synthesized by LEC10 cells were, however, resolved by lectin-affinity chromatography of glycopeptides from the G glycoprotein of vesicular stomatitis virus (VSV) grown in LEC10. LEC10/VSV glycopeptides contain a fraction which is not bound to concanavalin A-Sepharose but is strongly retarded on E-PHA (erythroagglutinin from Proteus vulgaris)-agarose. In contrast, CHO/VSV glycopeptides or those from a LEC10 revertant (R.LEC10/VSV) do not contain carbohydrates with these properties. High-field 1H NMR spectroscopy of the novel LEC10/VSV carbohydrates showed that they are complex, biantennary structures containing N-acetylglucosamine in β(1,4)-linkage to the β-linked core mannose residue. The presence of these structures correlates with the expression of the enzyme responsible for the addition of this 'bisecting' GlcNAc residue, UDP-GlcNAc:glycopeptide β-4-N-acetylglucosaminyltransferase III (GlcNAc-TIII). Parental Chinese hamster ovary cells and the LEC10 revertant possess no detectable GlcNAc-TIII activity. The combined evidence suggests that the LEC10 mutation induces the expression of the GlcNAc-TIII enzyme in Chinese hamster ovary cells.
AB - A biochemical basis for the LEC10 mutant phenotype of Chinese hamster ovary cells has been identified. Independent LEC10 mutants, originally selected for resistance to the toxicity of ricin, have been shown to exhibit reduced binding of 125I-ricin at the cell surface. Although this is indicative of structural changes in cell-surface carbohydrates, labeling of plasma membranes with galactose oxidase/[3H]borohydride revealed no significant differences between mutant and parental cells. Alterations in the carbohydrates synthesized by LEC10 cells were, however, resolved by lectin-affinity chromatography of glycopeptides from the G glycoprotein of vesicular stomatitis virus (VSV) grown in LEC10. LEC10/VSV glycopeptides contain a fraction which is not bound to concanavalin A-Sepharose but is strongly retarded on E-PHA (erythroagglutinin from Proteus vulgaris)-agarose. In contrast, CHO/VSV glycopeptides or those from a LEC10 revertant (R.LEC10/VSV) do not contain carbohydrates with these properties. High-field 1H NMR spectroscopy of the novel LEC10/VSV carbohydrates showed that they are complex, biantennary structures containing N-acetylglucosamine in β(1,4)-linkage to the β-linked core mannose residue. The presence of these structures correlates with the expression of the enzyme responsible for the addition of this 'bisecting' GlcNAc residue, UDP-GlcNAc:glycopeptide β-4-N-acetylglucosaminyltransferase III (GlcNAc-TIII). Parental Chinese hamster ovary cells and the LEC10 revertant possess no detectable GlcNAc-TIII activity. The combined evidence suggests that the LEC10 mutation induces the expression of the GlcNAc-TIII enzyme in Chinese hamster ovary cells.
UR - http://www.scopus.com/inward/record.url?scp=0021749885&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021749885&partnerID=8YFLogxK
M3 - Article
C2 - 6238035
AN - SCOPUS:0021749885
SN - 0021-9258
VL - 259
SP - 13370
EP - 13378
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 21
ER -