A comparison of the fine saccharide-binding specificity of Dioclea grandiflora lectin and concanavalin A

Dipti Gupta, Stefan Oscarson, T. Shantha Raju, Pamela Stanley, Eric J. Toone, C. Fred Brewer

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

The lectin from the seeds of Dioclea grandiflora (DGL) is a Man/Glc-specific tetrameric protein with physical and saccharide-binding properties reported to be similar to that of the-jack bean lectin concanavalin A (ConA). Unlike other plant lectins, both DGL and ConA bind with high affinity to the core trimannoside moiety, 3,6-di-O-(α-D-mannopyranosyl)-α-D-mannopyranoside, which is present in all asparagine-linked carbohydrates. in the present study, hemagglutination inhibition techniques have been used to investigate binding of DGL and ConA to a series of mono- and dideoxy analogs of methyl 3,6-di-O-(α-D-mannopyranosyl)-α-D-mannopyranoside and to a series of asparagine-linked oligomannose and complex oligosaccharides and glycopeptides. The results indicate that both DGL and ConA recognize epitopes on all three residues of the trimannoside: the 3-, 4-, and 6-hydroxyl groups of the α(1-6)Man residue, the 3-hydroxyl group of the α(1-3)Man residue, and the 2- and 4-hydroxyl groups of the central Man residue of the core trimannoside. However, unlike ConA, DGL does not bind to biantennary complex carbohydrates. This was confirmed by showing that biantennary complex glycopeptides do not bind to a DGL-Sepharose affinity column. Unlike ConA, DGL does not show enhanced affinity for a large N-linked oligomannose carbohydrate (Man9 glycopeptide) relative to the trimannoside. Thus, DGL and ConA share similar epitope recognition of the core trimannoside moiety. However, they exhibit differences in their fine specificities for larger N-linked oligomannose and complex carbohydrates.

Original languageEnglish (US)
Pages (from-to)320-326
Number of pages7
JournalEuropean Journal of Biochemistry
Volume242
Issue number2
DOIs
StatePublished - 1996

Keywords

  • Carbohydrate
  • Cross-linking
  • Glycopeptide
  • Lectin
  • Specificity

ASJC Scopus subject areas

  • Biochemistry

Fingerprint

Dive into the research topics of 'A comparison of the fine saccharide-binding specificity of Dioclea grandiflora lectin and concanavalin A'. Together they form a unique fingerprint.

Cite this