New Paradigms in the Design of Blood Substitutes

  • Friedman, Joel M. (PI)
  • Peisach, Jack (PI)
  • Chien, Ho (PI)
  • Manjula, Belur (PI)
  • Intaglietta, Marcos (PI)

Project: Research project

Project Details

Description

DESCRIPTION (provided by applicant):
The development of hemoglobin-based oxygen carriers (HBOCs) as a blood replacement
bridging strategy remains an elusive but much needed objective of transfusion medicine.
Complications due HBOC induced vasoactivity and a lack of understanding as to the origins of
this effect as well as unanticipated differences in oxygen transport properties of HBOCs and
RBC's, have hindered their development and deployment. A fully functional and highly
productive consortium of well-established investigators proposes a program project composed
of five projects and one cores that will: 1) Expose the underlying mechanism behind vasoactivity
complications associated with the infusion of HBOCs, 2) Test new paradigms for HBOC design
strategies and 3) Provide a blue print for HBOC design strategies that will allow for the control of
vasoactivity and customization for therapeutic applications. The program builds upon an
established, on going and highly successful collaborative efforts that have already yielded
important new results including: new high yield synthetic strategies for systematic size
enhancement of hemoglobins based on surface decoration with polyethylene glycol (PEG),
physiology studies showing that the colligative properties of certain PEG decorated
hemoglobins result in the elimination of vasoactivity, a new auto-regulatory model to account
for vasoactivity and a series of biophysical results that expose functional and conformational
consequences of different size enhancement and mutagenic strategies for modifying
hemoglobins.
The program, with Dr. Friedman as the P.I., will achieve its objectives through an orchestrated
interplay among three major themes: molecule design/synthesis, molecule characterization
and molecule testing. The program project consists of five projects, and a biochemical core.
Project 1 (Acharya, AECOM) and 2 (Ho, Carnegie Mellon) will primarily address design strategies based on chemical and mutagenic modifications respectively. Projects 3 (Friedman, AECOM) and 4 (Peisach, AECOM) will focus on biophysical and functional characterization of surface-decorated and mutagenized HbS. Project 5 (Intaglietta, UCSD) will cover physiological testing of HBOCs. Modified hemoglobins, designed through strategies developed from Projects 1 and 2, will be produced and chemically characterized in the Protein Biochemistry Core (Dr. Manjula, AECOM) in amounts needed for Projects 2(NMR), 3(optical spectroscopy and ligand reactivity), 4(EPR) and 5(physiology).
StatusFinished
Effective start/end date8/1/047/31/05

Funding

  • National Heart, Lung, and Blood Institute: $2,341,730.00

ASJC

  • Drug Discovery
  • Software
  • Materials Chemistry
  • Structural Biology
  • Architecture

Fingerprint Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.