Project Details
Description
The project proposed directly targets the vexing problem of controlling aberrant inflammation-induced
carcinogenic signals (e.g., TLR4) in the intestine by understanding the biological properties of adopted orphan
nuclear receptors (ONRs). One of these receptors, Pregnane X Receptor (PXR), is abundantly expressed in
the intestines and is a potential therapeutic target for colitis –associated colon cancer (CRC). Since existing
treatments for colitis-associated CRC are limited and have significant side effects, non-toxic targeting of
validated biological targets to prevent colon cancer is warranted. Based on our novel observations that IPA
abrogates murine intestinal inflammation (IBD) directly through the non-hematopoietic Pregnane X Receptor
(PXR)/Toll-like Receptor 4 (TLR4) signaling pathway, the goal of this project is to test the hypothesis that
intestinal PXR can be uniquely modulated by small molecules designed to mimic the gut indole metabolites as
a novel approach to treat IBD. Based on the indole/IPA chemical scaffold mimicry, this project will generate
novel PXR ligands that can therapeutically target intestinal inflammation and colon cancer in humans, and will
provide mechanistic insights into how these molecules binds to PXR. Our preliminary studies have shown that
IPA derived from symbionts significantly reduces indomethacin-induced intestinal injury in mice in a PXR and
TLR4 dependent manner. IPA regulates intestinal barrier function through PXR. An inverse relationship
between PXR and TLR4 as well as IPA and inflammation in human intestinal samples and cell lines, supports
our findings in mice. In mice, IPA is a potent activator of PXR, while the human receptor is effectively activated
when combined with base indole at a physiologically relevant level. Human PXR LBD mutants were insensitive
to activation by indole and IPA. Both Indole and IPA bind to PXR protein in solution. IPA protects against
colitis-induced CRC in mice. Small molecule mimics (FKK) of indole/IPA chemical scaffold potently activate
PXR and are non-toxic to cells and tissues. Thus, as PXR is a relevant target for intestinal inflammation, we
hypothesize that microbial metabolite mimicry will allow for the design of novel, potent and most of all safe
compounds that activate PXR and abrogate colitis-associated CRC. To achieve our goals we will (1)
synthesize and validate in vitro FKK drug-like lead compounds targeting PXR using rational structure based
design; (2) optimize lead FKK candidates based on binding affinity and specificity; (3) evaluate the in
vivo efficacy of the lead FKK compounds in abrogating CRC using chemical hPXR mouse models of intestinal
inflammation/CRC. In the short-term, we hope to have validated a single novel therapeutic lead based on
their likelihood to safely abrogate CRC in mice. These studies can serve as the basis for further validation
in human disease-specific animal models in the laboratory prior to embarking on clinical translation. Since
PXR has been shown to significantly modulate barrier function in mice, our IPA-like leads could
potentially have broader impact on other diseases propelled by a dysfunctional intestinal barrier.
Status | Active |
---|---|
Effective start/end date | 8/14/18 → 7/31/23 |
Funding
- National Cancer Institute: $371,820.00
- National Cancer Institute: $495,752.00
- National Cancer Institute: $502,449.00
- National Cancer Institute: $374,573.00
- National Cancer Institute: $218,150.00
- National Cancer Institute: $331,156.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.