Project Details
Description
ABSTRACT
Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are generally incurable hematologic
malignancies, originating from aberrant hematopoietic stem cells (HSCs). These diseases occur mainly in the
elderly and are preceded by an often-unrecognized precancerous phase, which can last for years and is hallmarked
by a progressively changing HSC compartment. Such molecularly and functionally diverging stem cells, termed
pre-leukemic stem cells (pre-LSCs), harbor a higher propensity to undergo malignant transformation.
Mechanisms that separate the healthy aging process from cancer evolution are incompletely resolved. This gap
in our knowledge poses a significant challenge for the development of curative therapies for myeloid malignancies
for which cure rates have mostly remained below 30% over the last decades.
Our study will investigate the role of chaperone-mediated autophagy (CMA), a highly selective subtype of
autophagy, which has not been systematically characterized in the hematopoietic system thus far. Contrary to
macroautophagy, CMA specifically degrades proteins containing defined recognition motifs (“KFERQ”, and
variants), and maintains integrity and proper function of many cell types during chronic stress and aging. CMA
declines in and critically contributes to several age-associated pathologies, yet its role in leukemogenesis and
cancer stem cell evolution is unknown. Using new genetic mouse models, we have obtained exciting preliminary
data demonstrating that CMA sustains the function of healthy HSCs. Furthermore, we found that impairment of
CMA increased pre-LSC function that appears to be linked with increased levels of reactive oxygen species,
accumulating in CMA-deficient stem cells. For this study, we hypothesize that CMA protects against stem cell
dysfunction and malignant transformation.
We will utilize a complementary model set consisting of genetic mouse models, human cell lines and primary
patient-derived cells for the study of (1) CMA activation patterns in healthy HSCs and pre-LSCs (leveraging a
CMA reporter mouse and lentiviral CMA biosensors for primary human cells), (2) molecular and (3) functional
consequences of CMA inactivation and stimulation. We will also test a new chemical CMA activator tool
compound for its efficacy to promote healthy HSCs and impair pre-LSCs, which could be further developed for
clinical use.
Our study will provide new insights into a molecular mechanism declining during aging and predisposing adult
tissue-specific stem cells to malignant transformation, which will have important implications for the
development of new therapeutic strategies for targeting autophagy in myeloid malignancies, and possibly other
stem cell-derived cancers.
Status | Active |
---|---|
Effective start/end date | 9/1/18 → 8/31/23 |
Funding
- National Cancer Institute: $382,013.00
- National Cancer Institute: $313,503.00
- National Cancer Institute: $68,510.00
- National Cancer Institute: $370,552.00
- National Cancer Institute: $382,013.00
- National Cancer Institute: $382,013.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.